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Background

Quick overview on symbolic vs. sub-symbolic Al
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Symbolic vs. Sub-symbolic Al

Two broad categories of Al approaches:
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Why the wording “Symbolic” vs. “Sub-symbolic™? (pt. 1)

Local vs. Distributed Representations

Localist Representation

Distributed Representation
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e Local =~ “symbolic”: each symbol has a clear, distinct
meaning

= e.g. "bear" is a symbol denoting a crisp category (either the
animal is a bear or not)

e Distributed =~ “non-symbolic”: symbols do not have a clear
meaning per se, but the whole representation does

= e.g. "swim" is fuzzy capability: one animal may be (un)able to
swim to some extent

Let’s say we need to represent [V classes,
how many columns would the tables have?




Why the wording “Symbolic” vs. “Sub-symbolic™? (pt. 2)

What is a “symbol” after all? Aren’t numbers symbols too?

According to Tim van Gelder in 1990:

Symbolic representations of knowledge

e involve a set of symbols

e which can be combined (e.g., concatenated) in (possibly) infinitely many ways,

 following precise syntactical rules,

e where both elementary symbols and any admissible combination of them can be assigned with meaning Y,
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Why “Sub-symbolic” instead of “Non-symbolic” or just “Numerical”?

e There exist approaches where symbols are combined with numbers, e.q.:

= Probabilistic logic programming: where logic statements are combined with probabilities
= Fuzzy logic: where logic statements are combined with degrees of truth
= Bayesian networks: a.k.a. graphical models, where nodes are symbols and edges are conditional dependencies with probabilities, e.qg.

Alarm bus, overs. yes no
on? yes, yes 0.1 0.9

yes, no 0.2 0.8

yes no alarm | yes no no, yes 0.3 0.7
0.9 0.1 yes 0.1 0.9 ne, fa 0.9 0.1

no 0.9 0.1

e These approaches are not purely symbolic, but they are not purely numeric either, so we call the overall category “sub-symbolic”
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Examples of Symbolic Al (pt. 1)

 Logic programming: SLD resolution (e.g., Prolog)

Knowledge representation: Semantic Web (e.g., OWL), Description Logics (e.g., ALC)
Automated reasoning: Theorem proving, Model checking

Planning: STRIPS, PDDL
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Examples of Symbolic Al (pt. 2)

Logic programming with SLD resolution

parent(abraham, isaac). (json(S, jacob)i)
parent(isaac, jacob).
parent(sarah, isaac). %s1 {S=X1,
parent(jacob, joseph). Yl=jacob}
parent(jacob, dan). y
parent(jacob, dinah). (: parent(jacob, X1),
male(X1)

male(abraham).
male(isaac). %p4 /5 %P6
nale(jacob). {X1=josep {leLan} {X1=dina
male(joseph). - !
male(dan). [_male(joseph)l) [;male(dan)lJ ( male(dinah) J
son(X,Y) :- parent(Y,X), %ma {} %m5 {}

male(X). =

/o (e ) (e ) (rarse)

S=joseph S=dan

?- son(S,jacob). |
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Examples of Symbolic Al (pt. 3)

Ontology definition in OWL

<< owl:0Ontology >>
OntologyA
=< owl:ObjectProperty >=
| authorOf :
| | :
<< rdfz::ranga:a:-\J | ; << rdfs:domain>>
. isAbout T thorOf |
Topic I('S 2 Publication |[€&—— Person
name I\ /\
Article b > Book Thesis Researcher
<< owl:disjointWith >>
authorOf
FowlerUML: Book |< Fowler. Researcher
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Examples of Symbolic Al (pt. 4)

Model-checking (as opposed to testing)

Testing Model Checking Legend

States
. covered

. violated
.unknown
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Examples of Symbolic Al (pt. 5)

Planning in STRIPS

Available actions

e grab(X): grabs block X from the table

e put(X): puts block X on the table

e stack(X, Y):stacks block X on top of blockY

e unstack(X, Y):un-stacks block X from block Y



What do these symbolic approaches have in common?

Structured representations: knowledge (/0 data) is represented in a structured, formal way (e.qg., logic formulas, ontologies)

Algorithmic manipulation of representations: each approach relies on algorithms that manipulate these structured representations
following exact rules

Crisp semantics: the meaning of the representations is well-defined, and the algorithms produce exact results

= representations are either well-formed or not, algorithms rely on rules which are either applicable or not

e Model-driven: algorithms may commonly work in zero- or few-shot settings, humans must commonly model and encode knowledge in the
target structure

e Clear computational complexity: the decidability, complexity, and tractability of the algorithms are well understood
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Examples of Sub-symbolic Al (pt. 1)

e Machine learning: supervised, unsupervised, and reinforcement learning

= Supervised learning: fitting a discrete (classification) or a continuous function (regression) from examples
s Unsupervised learning: clustering, dimensionality reduction
= Reinforcement learning: learning a policy to maximize a reward signal, via simulation

* Probabilistic reasoning: Bayesian networks, Markov models, probabilistic logic programming

DEPARTMENT
ALMA MATER STUDIORUM | OF COMPUTER SCIENCE
UNIVERSITA DI BOLOGNA | AND ENGINEERING



Examples of Sub-symbolic Al (pt. 2)

Supervised learning

Labeled Data

Prediction
Square
o _, s I
— — 2§
7\
_I—b Triangle

Model Training

Lables

Test Data
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Examples of Sub-symbolic Al (pt. 3)

Supervised learning - Classification vs. Regression (1/2)

Data separation vs. curve fitting:

1.2—
1.0
0.5}
0.6 -

044

0.2 +

‘02 = IO b

! 1 I i !
06 -04 -02 0O 02 04 06 0% 0 20 30 40 50 60 70 %0

classification re,gre,ssion
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Examples of Sub-symbolic Al (pt. &)

Supervised learning - Classification vs. Regression (2/2)

Focus on the target feature:

Classification Data Regression Data

Categorical Numeric
"Labels" Target



Examples of Sub-symbolic Al (pt. 5)

Unsupervised learning - Clustering

) Original unclustered data . Clustered data
5t - 5t
4 - 1 4+
3+ - 3 1
£2F 1 2 2r .
1 - 1
o ° - o °
1k ’ 2 —1F )
23 2 -1 0 1 2 3 4 5 6 23 -2 -1 0 1 2 3 4 5
T T
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Examples of Sub-symbolic Al (pt. 6)

Unsupervised learning - Reinforcement learning (metaphor)

=1
=N ST
Environment

j Re'/'/ard

Interpreter

% o

Agent

Action
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Examples of Sub-symbolic Al (pt. 7)

Reinforcement learning - Reinforcement learning (policy)

1 2 3 4 5
s
1 +1 - +1
6 7 8 9 10 2 +1 -1 +1
@ 3 +1 1 +1
11 13 14 15 4 +1 -1 1
> +1
5 +1 +1
16 18 19 20
23 +1 - -1 +1
21 22 23 24 25 24 +1 - -1 -1
25 +1 +1
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What do these sub-symbolic approaches have in common?

e Numeric representations: knowledge (I/0 data) is represented in a less structured way, often as vectors/matrices/tensors of numbers

 Differentiable manipulation of representations: algorithms rely on mathematical operations involving these numeric representations,
most-commonly undergoing some optimization process

= e.g., sum, product, max, min, etc.

e Fuzzy/continuous semantics: representations are from continuous spaces, where similarities and distances are defined in a continuous
way, and algorithms may vield fuzzy results

e Data-driven + Usage vs. training: algorithms are often trained on data, to be later re-used on other data

= usage is commonly impractical or impossible without training

e Unclear computational complexity: strong reliance on greedy or time-limited optimization methods, lack of theoretical guarantees on the
quality of the results
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Long-standing dualism

Intuition vs. Reasoning
1. Esprit de finesse vs. Esprit de géométrie (Philosophy) — Blaise Pascal, 1669

2. Cognitivevs. Behavioural Psychology — B.F. Skinner, 1950s
3. System 1 (fast, intuitive) vs. System 2 (slow, rational) — Daniel Kahneman, 2011

Sub-symbolic Al Symbolic Al
e Provides mechanisms emulating human-like intuition e Provides mechanisms emulating human-like reasoning
e Quick, possibly error-prone, but often effective e Slow, but precise and verifiable
e Requires learning from data e Requires symbolic modeling and encoding knowledge
e Often opaqgue, hard to interpret or explain e Often transparent, easier to interpret and explain
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Need for integration

e the NeSy community has long recognized the complementarity among symbolic and sub-symbolic approaches...
e ... with a focus on neural-networks (/N//N) based sub-symbolic methods, as they are very flexible

Patterns of integration or combination (cf. Bhuyan et al., 2024)
1. Symbolic Neuro-Symbolic: symbols — vectors — NNs — vectors — symbols

invokes

2.Symbolic[Neuro]: symbolic module > NN — output

cooperates cooperates

3.Neuro | Symbolic: NN > symbolic module > NN — ...

] _ in fluences
4. Neuro-Symbolic - Neuro: symbolic knowledge > NN
] constrains
5. Neuro : symbolic knowledge > NN

Symbolic’ ,
] ] embeddedin
6. Neuro[Symbolic]: symbolic module > NN
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Focus on two main approaches

(cf. Ciatto et al., 2024)

e Symbolic Knowledge Extraction (SKE): extracting symbolic knowledge from sub-symbolic models

= for the sake of explainability and interpretability in machine learning

e Symbolic Knowledge Injection (SK/): injecting symbolic knowledge into sub-symbolic models

= for the sake of frustworthiness and robustnessin machine learning

Both require some basic understanding of how supervised machine learning works
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Supervised Machine Learning 101
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Supervised Machine Learning 101 (pt. 1)

1. Let’s say you have a dataset of vectors in R"

2. Let’s say the vectors are labelled differently (2 colors)

Points Separated by an Oblique Sigmoid Curve

10.0 %
% x&xx X x X X X
X X X R X p 4
X X X Xy % % ®
5.0f Xl . X Xy
XX "X o X X X x X
x X X X X% x X
25h sex § X o X Y Ex X . X
xX  ix X X x X
X X b4 % X X
X X X X
> 0.0 X X X-%x
X )w X X X §
X X
-2.5} X 5 X x ¥ o - XX e
» 5 X X L «
e XX X X X X XX
-5.0r % XX X
X % x X
7.5 e A X xox X
— »* X x X )‘“ X X Xx
X % % X X » X X
_100F X *Ex X % x
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
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2. Let’s say the vectors are aligned (along a curve)

100}

80

60

40 1

20

) XX

Points roughly forming a parabola

XX

—10.0

—-7.5

-5.0 =25

3. Let’s say you want to interpolate them

7.5

10.0



Supervised Machine Learning 101 (pt. 2)

4. Then, need to approximate the function f...

4. ... separating them (the sigmoid here) 4. ...interpolating them (the parabola here)
Points with Oblique Sigmoid Decision Boundary Points and Fitted Parabola
10.0
100
751
80t
501
2571 60
> 0.0 >
40 t
=257
—50F 201
—-7.5¢1
X X X X x Data points 0
X .
—100F = XX x = X x " — Decision boundary X pata points X X
! ! ! ! | | | | . - Fitted parabola X
-10.0 -=7.5 -5.0 =25 0.0 2.5 5.0 7.5 10.0 ' ' ' ' ' ' ' ' '
-10.0 -=7.5 -5.0 =25 0.0 2.5 5.0 7.5 10.0

52The function f is the decision boundary (a.k.a. classifier)

-
O
2\
s/
&

5. The function f is the regression curve (a.k.a. regressor)

oEPARTIVENT 6. How to compute such a function f?

OF COMPUTER SCIENCE
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Supervised Machine Learning 101 (pt. 3)

Let’s formalize the problem (1/2)

1. Let’s assume the data represented as a set of vectors in a dataset D C R"s.t. |[D| = m
e e.g. D = (z1,y1,¢1), (X2,Y2,C2),- - -, (Tm, Ym, Cm) for the classification dataset
e 9. D = (z1,¥1), (£2,Y2), - - -, (T, Ym ) for the regression dataset

2. Let X (resp. V) be the input (resp. output or target) space of the data at hand

e sodX e XanddY € Ysit. (X,Y)=D
e i.e. X isthe input dataandY is the target datain D
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Supervised Machine Learning 101 (pt. 4)

Let’s formalize the problem (2/2)

3.LetH ={f| f: X = Y} bethe set of all possible functions mapping X' to Y

e i.e. the so-called hypothesis space

4. We need now to find the best f* € H

e best w.r.t to what?

5. We need to define a loss function L that quantifies the difference between the predicted output f(X) and the true output’Y
e forany possible f € H
6. So, our learning problem is as simple as a search problem in the hypothesis space:

fr= argrfréglﬁ(f(X),Y)

7.0k, butin practice, how do we do that?
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Supervised Machine Learning 101 (pt. 5)

Let’s solve the problem

1. How to explore the hypothesis space, depends on what sorts of functions it contains
2. There exist several sorts functions for which an exploration algorithm is known

e.g. H = polynomials of degree 1 (i.e. lines: f(Z) = B+ @ -Z = B+ wix1 + ... + WnTy)

e.g. H = polynomials of degree 2 (i.e. parabolas: f(Z) = B+ wix1 + ... + wpT, + w%w% +...4+ w,%a:%)
e.g. H = decision trees (i.e. if-then-elserules: f(Z) = if ¢; < c¢; then y; else if z3 < co then ys...)
e.g. H = k-nearest neighbors (f(Z) = class of (most of) the k£ nearest neighbors of z)

e.g. H = neural networks (i.e. NNs: f(Z) = o( + @ - ) where o is a non-linear activation function, e.g. sigmoid, ReLU, etc.)

~

Remark: because of the “no free lunch” theorem, no single algorithm is the best in the general case

e i.e., each learning problem may be better addressed by a different learning algorithm Y.
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Supervised Machine Learning 101 (pt. 6)

Let’s solve the problem with neural networks

Inputs Weigths

P Weigthed
Sum

S Activation

@\» N’ Function Output

input layer hidden layer 1 hidden layer 2 output layer

Single neuron
(Feed-forward)

Neural network = cascade of layers
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Input Cell
(O Backfed Input Cell
/\ Noisy Input Cell
@ Hidden cel
. Probablistic Hidden Cell
. Spiking Hidden Cell
‘ Capsule Cell
. Output Cell

. Match Input Output Cell
. Recurrent Cell

. Memory Cell

. Gated Memory Cell

Kernel

O Convolution or Pool

Markov Chain (MC) Hopfi

A mostly complete chart of

Neural Networks oo

©2019 Fjodor van Veen & Stefan Leijnen  asimovinstitute.org

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)
Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
o o o o o o

WY iy VY
praer A PR

Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

eld Network (HN) ~ Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN)

N AN AN
KRS BB ORI

Deep Convolutional Network

‘\><\><‘\><\><‘\

Generative Adversarial Network

L et

Deep Residual Netw

e eveee

Capsule Network

X IX XX

S aYa¥aY
VAW WAV,

(DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
- VN —~
O/ © ~ Z< ~ O\ ~ © ~
Py ~A ~A
\O/O\ >§ ~/O\o O/O\
SN O/ . >< ~ O/ ~ O/
N O/ ~ 2 Y o O/ ~
~ 0 ~ >< ~ ) e ~ o) ~
~ 2" % ~
(GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)
ork (DRN) Differentiable Neural Computer (DNC) Neural Turing Machine (NTM)
o o o
7 %
Gb":&3§$
% N
<\
N
Attention Network (AN)

N

Kohonen Network (KN) %

Many admissible architectures


https://www.asimovinstitute.org/neural-network-zoo/

Supervised Machine Learning 101 (pt. 7)

Let’s solve the problem with gradient descent




Supervised Machine Learning 101 (pt. 8)

How things may go wrong - Underfitting vs. Overfitting




Supervised Machine Learning 101 (pt. 9)

How to address: Test-Set Separation

X _train vy _train
Full Datasa_t Features Target

2. Use for training
4

0. Arrange data
0 =

1. *Train Test Spilit
—
*Consists of;

l a. Random

sampling X _test y_test

ML Model

training & test

:] sets

| b. Splitinto
4. Use for testing
—
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Supervised Machine Learning 101 (pt. 10)

How things may go wrong - Training is stochastic

Depending on its start, training may vield different results: Solution is coss-validation:

L i shoedbehe T
R
B Fold 1
J(BEHH]) | B
Fold 2
Fold K

1. Train the k different models (same architecture) on k different subsets of the training set
2. Average the results of the kK models
3. If average is good, the model is considered more robust and reliable

o useful when comparing different architectures or hyper-parameters
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Supervised Machine Learning 101 (pt. 11)

How things may go wrong - Data may not be numeric

Solution: change encoding

workclass workclass _
State-gov 0 Red

Red 1 0

Self-emp-not-inc 1 :> 1 0

Yellow

o o o

Private 2 Green 0 1
Private 2 Yellow 0 0 1
Private 2

(One-hot encoding)

(Ordinal encoding)
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Supervised Machine Learning 101 (pt. 12)

How things may go wrong - Data may not be separable by a proper function...

Solution: feature engineering (map data into a different space)

Points Separated by a Circular Decision Boundary Points in Polar Coordinates with Circular Decision Boundary

10.0F Data points 20

= Decision boundary

Data points
= Decision boundary

7.5F

5.0

251

180
=25}

_50 |

=75

—10.0f

-10 -5 0 5 10
X 270°

n-linearly-separable data ... ... may be separable in another space
1Y) (p = /22 + 92,0 = arctan(y/z))
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Symbolic Knowledge Extraction (SKE)

How to extract symbolic knowledge from sub-symbolic predictors




Definition and Motivation (pt. 1)

~

any algorithmic procedure accepting trained sub-symbolic predictors as input and producing symbolic
knowledge as output, so that the extracted knowledge reflects the behaviour of the predictor with high
fidelity.

J
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Definition and Motivation (pt. 2)

« Explainable Al (XAl): SKE methods are often used to provide explanations for the decisions made by sub-symbolic predictors, making them
more interpretable and understandable to humans (a.k.a. post-hoc explainability)

» [ocal explanations: explanations for individual predictions
» global explanations: explanations for the overall behaviour of the predictor

* Knowledge discovery: SKE methods can help discover patterns and relationships in the data that may not be immediately apparent, thus
providing insights into the underlying processes

e Model compression: SKE methods can simplify complex sub-symbolic models by extracting symbolic rules that approximate their
behaviour, thus reducing the model’s size and complexity

DEPARTMENT
ALMA MATER STUDIORUM | OF COMPUTER SCIENCE
UNIVERSITA DI BOLOGNA | AND ENGINEERING



Explainability vs Interpretability

They are not synonyms in spite of the fact that they are often used interchangeably!

Explanation Interpretation

e elicits relevant aspects of objects (to ease their e binds objects with meaning (what the human mind does)

interpretation) e itis subjective

e itis an operation that transform poorly interpretable

. : . e it does not need to be measurable, only comparisons
objects into more interpretable ones

e search of a surrogate interpretable model
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Concepts

Main entities and how to extract symbolic knowledge from sub-symbolic predictors
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Sub-symbolic predictor

sepal. Length

setosa
Sepal. Width

versicolor
Petal.Length

virginica

Petal.Width

Error: 0.346668 Steps: 26926
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Entities

Symbolic knowledge

Logic Rule

Class = setosa — PetalWidth < 1.0

Class = versicolor — PetalLength > 4.9 A
SepalWidth € [2.9, 3.2]

Class = versicolor — PetalWidth > 1.6

Class = virginica — SepalWidth <2.9

Class = virginica — SepalLength € [5.4, 6.3]

Class = virginica — PetalWidth € [1.0, 1.6]



How SKE works

Decompositional SKE Pedagogical SKE
if the method needs to inspect (even A if the algorithm does not need to take into
partially) the internal parameters of the account any internal parameter, but it can
underlying black-box predictor, e.g., neuron extract symbolic knowledge by only relying
biases or connection weights for NNs, or on the predictor’s outputs.
support vectors for SVMs /

J

ALMA MATER STUDIORUM

DEPARTMENT
UNIVERSITA DI BOLOGNA

OF COMPUTER SCIENCE
AND ENGINEERING



ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

DEPARTMENT
OF COMPUTER SCIENCE
AND ENGINEERING

Overview

SKE methods: theory and practice
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CART (pt. 1)

Classification and regression trees (cf. Breiman et al., 1984)


https://doi.org/10.1201/9781315139470

CART (pt. 2)

* absent & present
start >= 8.57
~start >= 147
1 1o
age < 4.67 =
® o
[T -
age >= 9.27
ld
0.00) (000> 058
36% 15% 17% 9% 23%

An example decision tree estimating the probability of kyphosis after spinal surgery, given the age of the patient and the vertebra at which
surgery was start ed (rf. wiki:dt-learning). Notice that all decision trees subtend a partition of the input space, and that those trees
themselves provide intelligible representations of how predictions are attained.
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https://en.wikipedia.org/w/index.php?title=Decision_tree_learning

CART (pt. 3)

1. generate a synthetic dataset by using the predictions of the sub-symbolic predictor
2. train a decision tree on the synthetic dataset
3. compute the fidelity and repeat step 2 until satisfied

4. [optional] rewrite the tree as a set of symbolic rules

DEPARTMENT
ALMA MATER STUDIORUM | OF COMPUTER SCIENCE
UNIVERSITA DI BOLOGNA | AND ENGINEERING



Practical example of SKE

The Adult dataset (cf. Becker Barry and Kohavi Ronny, 1996)
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https://doi.org/10.24432/C5XW20

Adult classification task

The Adult dataset contains the records (48,842) of individuals based on census data (this dataset is also known as Census Income). The
dataset has many features (14) related to the individuals’ demographics, such as age, education, and occupation. The target feature is
whether the individual earns more than $50,000 per year.

Examples of Adult records
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age workclass education hours-per-week native-country income
39 State-gov Bachelors ... 40 United-States <=50K
50 Self-emp-not-inc Bachelors ... 13 United-States <=50K
38 Private HS-grad 40 United-States <=50K
53  Private 11th 40 United-States <=50K
28  Private Bachelors 40 Cuba <=50K
37  Private Masters 40 United-States <=50K
49  Private 9th 16 Jamaica <=50K
52 Self-emp-not-inc HS-grad 45 United-States >50K
31  Private Masters 50 United-States >50K
42  Private Bachelors 40 United-States >50K



What we will do

1. Download the Adult dataset and preprocess it
2. Train a sub-symbolic predictor - a neural network - on the Adult dataset
3. Use a pedagogical SKE method - CART - to extract symbolic knowledge from the trained neural network

4. Vlisualise the extracted symbolic knowledge as a decision tree and as a set of rules
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Jump to the code

GitHub repository at github.com/MatteoMagnini/demo-2025-woa-nesy/blob/master/notebook/extraction.ipynb
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https://github.com/MatteoMagnini/demo-2025-woa-nesy/blob/master/notebook/extraction.ipynb

Taxonomy of SKE methods (pt. 1)

SKE

[Translucency [TargetAI Task ] Input data ] Output Knowledge ]

[Pedagogical ] [Decompositional ] [Classification ] [Regression ] Binary | [Expressiveness ]

X X

Discrete |

| SVM ANN Propositional ] I Rule List |

A[Continous ] k
‘ DTE ANN3 Fuzzy [Decision Tree J
| LC

|

| . [ .. ]
ANN4 Oblique Decision Table
S < |

M-of-N

gl E
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Taxonomy of SKE methods (pt. 2)

Target Al task Input data
e classification e binary
f: X CR - Xs.t.|%| =k Z=0,1n
® regression e discrete
f: Z CR— % CRnm Z Ex, ..., T

e continuous

Z C Re
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Taxonomy of SKE methods (pt. 3)

Shape Expressiveness
o rule list, ordered sequences of if-then-else rules e propositional, boolean statements + logic connectives,
including arithmetic comparisons among variables and

e decision tree, hierarchical set of if-then-else rules
: : : : constants
involving a comparison among a variable and a constant
e fuzzy, hierarchical set of if-then-else rules involving a

e decision table, 2D tables summarising decisions for each _ ,
comparison among a variable and a constant

possible assignment of the input variables
e obligue, boolean statements + logic connectives +
arithmetic comparisons

e M-of-N, any of the above + statements of the form “at least
k of the following statements are true”
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Discussion

Notable remarks Limitations

e discretisation of the input space e tabular data as input, no images

e discretisation of the output space e high dimensional datasets could lead to poorly readable
rules

e features should have semantic meaning

e rules constitutes global explanations e high variable input spaces could do the same
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Future research activities

e target images or highly dimensional data in general
e target reinforcement learning (when based on NN)
e target unsupervised learning

e design and prototype your own extraction algorithm
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Symbolic Knowledge Injection (SKI)

How to inject symbolic knowledge into sub-symbolic predictors




Definition and Motivation (pt. 1)

~

Any algorithmic procedure affecting how sub-symbolic predictors draw their inferences in such a way that
predictions are either computed as a function of, or made consistent with, some given symbolic knowledge.

/
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Definition and Motivation (pt. 2)

* Improve predictive performance: by injecting symbolic knowledge, we can

= guide the learning process in order to penalise inconsistencies with the symbolic knowledge, or
» structure the model’s architecture to mimic the symbolic knowledge

e Enhance interpretability: with SKI we can make predictors that are

= interpretable by transparent box design, as they are built to mimic symbolic knowledge
= interpretable using symbols as constraints, as they are built to respect symbolic knowledge

* Robustness to data degradation: symbolic knowledge can help sub-symbolic models maintain performance even in the presence of noisy
or scarcity of data

e Enhance fairness: by incorporating symbolic knowledge about fairness constraints, we can ensure that sub-symbolic models make
decisions that align with ethical considerations

e And more: SKI can simplify the predictor’s architecture, in particular it can reduce the number of weights in a neural network, thus
improving its efficiency and reducing the risk of overfitting
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Concepts

Main entities and how to inject symbolic knowledge into sub-symbolic predictors
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Entities

Predictor: a sub-symbolic model that makes predictions based on input data, usually a neural network

Symbolic knowledge: structured, formal knowledge that can be represented in a symbolic form. The most common forms of symbolic
knowledge are

» Propositional logic, simple rules with if-then structure
» Datalog, a subset of first-order logic with no function symbols, only constants and variables

e Fuzzification: the process of converting symbolic knowledge into a form that can be used by sub-symbolic predictors, e.g. by assigning
degrees of truth to symbolic statements

Injector: the main component that injects symbolic knowledge into the predictor, by modifying its architecture, its training process or by
other means
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Constraining

Parsing »| Fuzzification 3
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Knowledge Injection via Network Structuring (KINS)

(ref. Magnini et al., 2023)
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https://doi.org/10.1093/LOGCOM/EXAD037

Fuzzification

Formula C.interpretation Formula C. interpretation
[—¢l]  n(1—{[¢]]) ¢ < 9] (1 + [[4]] — [l¢]])
(oAl n(min({[g]], [[#]])) [class(X,y;) < ¢]] [[¥]]"

¢ VY]] n(max([[¢]], [[4]])) [expr(X)]] expr([[X]])

¢ =4l n(l-(e# ¥)) [truel] 1

¢ # ¥l n(llle]] - [[ 111 |false|] 0

¢ > 9] n(max(0, 3 +[[¢]] - [¥]])) [X]] z

¢ > 9] 0+ [[¢]]—[[ 1]) [K]] k

(¢ <9]] n(max(0, 3 + [[¥]] = [4]])) [[p(X)]]* (31 V...V thg]]

* encodes the value for the ¢*® output ** assuming p is defined by k clauses of the form:
p(X) <« Y1, ..., p(X) < Yy
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Injector (pt.1)
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Injector (pt. 2)




Knowledge Injection via Lambda Layer (KILL)

(ref. Magnini et al., 2022)
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https://ceur-ws.org/Vol-3261/paper5.pdf

Fuzzification

Formula C. interpretation Formula C. interpretation
[\neg \phi]] n(1 — [[¢]]) [\phi \le \psi]] n(l[¢l] — [[#1])
[\phi\wedge \psil] n(max([[¢]], [[¢]])) [class(X,y:) < ¢]] [[#I]"
[\phi\vee\psil]  n(min([[¢]],[[#]]))  [expr(X)]] expr([[X]])
[\phi =\psi]] n(lllel] — [[41]]) [truel] 0
[\phi \ne \psi]] [—(¢ =v)]] |false]] 1
[\phi >\psi]] n(z — [l + [[¥])  [[X]] z
[\phi\ge\psill  n([[4]] — [[¢]]) K] k
[\phi < \psi]] n(z + gl = [ [pX)]* (31 V..V ]
* encodes the penalty for the 7*® neuron ** assuming predicate p is defined by & clauses of the form: o
p(X) < Y1, ..., p(X) — Yy )




Injector (pt.1)

Cost function: whenever the neural network wrongly predicts a class and violates the prior knowledge a cost proportional to the violation is
added. In this way the output of the network differs more from the expected one and this affects the back propagation step.

Y' = f(Y,cost)
f=Y x (1 + cost)

cost(X,Y) =n(p(X)—(1—-Y)) (1 —Y because 0 means true)
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Practical example of SKI

The poker hand data set (PHDS) (cf. Cattral Robert and Oppacher Franz, 2002)

DEPARTMENT
ALMA MATER STUDIORUM | OF COMPUTER SCIENCE
UNIVERSITA DI BOLOGNA | AND ENGINEERING


https://doi.org/10.24432/C5KW38

PHDS classification task

id S1 R1 S2 R2 S3 R3 S4 R4 S5 R5 class
1 1 10 1 11 1 13 1 12 1 1 9
2 2 11 2 13 2 10 2 12 2 1 9
3 3 12 3 11 3 153 3 10 3 1 9
4 4 10 4 11 4 1 4 13 4 12 9
5 4 1 4 13 4 12 4 11 4 10 9
e Each record represents one poker hand
6 1 2 1 4 1 5 1 3 1 6 8
e 5 cards identified by 2 values: suit and rank
/ 1 9 1 12 1 10 1 11 1 13 8
* Classes: 10 8 2 1 2 2 2 3 2 4 2 5 8
 Test set: 1,000,000 10 4 1 4 & 4 2 4 3 4 5 8
11 1 1 2 1 3 9 1 5 2 3 1
12 2 6 2 1 4 13 2 4 4 9 0
13 1 10 4 6 1 2 1 1 3 8 0
14 2 13 2 1 4 4 1 5 2 11 O
15 3 8 4 12 3 9 4 2 3 2 1
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Logic rules to inject (pt. 1)

Class Logic Formulation

Pair class(R:, ..., Ss, pair) - pair(Ri, ..., Ss)

pair(R:, ..., Ss) « R:1 = R;
pair(R:i, ..., Ss) <« R:1 = Rs
pair(R:, ..., Ss) <« R:1 = R4
pair(R:, ..., Ss) « R:1 = Rs
pair(R:, ..., Ss) « R. = Rs
pair(R:, ..., Ss) —« R, = R4
pair(R:i, ..., Ss) « R, = Rs
pair(Ri, ..., Ss) —« Rs = R4
pair(R:, ..., Ss) « Rs = Rs
pair(R:, ..., Ss) « Ra = Rs
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Logic rules to inject (pt. 2)

Class Logic Formulation

Two Pairs class(R., ., Ss, two) - two(R., ..., Ss)
two(R:, ..., Ss) « R = R n Rs = R,
two(Ry, ..., Ss) <« R. = Rz A R, = Ry
tWO(R1, cee g Ss) « R1 = Rs A Rz, = R3
two(R:, ..., Ss) « R: = R2 A Rz = Rs
two(R:, ..., Ss) « R: = Rs A Rz = Rs
two(R:, ..., Ss) « R: = Rs A R, = Rs
two(Rs, ..., Ss) « R: = Rz A Rs = Rs
tWO(R1, cee g Ss) « R1 = Rs A R, = Rs
two(R:, ..., Ss) « R: = Rs A R, = Ry
two(R:, ..., Ss) « R: = Rs A Rs = Rs
two(R:, ..., Ss) « R: = Rs A Rs = Rs
two(Rs, ..., Ss) <« R: = Rs A Rs = Ry
tWO(R1, cee g Ss) — R2 = Rz A Rs = Rs
two(R:, ..., Ss) « Rz = Rs A Rs = Rs
two(R:, ..., Ss) « R = Rs A R:s = Ry
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Logic rules to inject (pt. 3)

Class Logic Formulation

Three of a Kind class(R., ..., Ss, three) — three(R:, ..., Ss)
three(R:, ..., Ss) « R: = R A R: = Rs
three(R:i, ..., Ss) « Ri« = R n R:1 = R4
three(R:, ..., Ss) « R: = R n R: = Rs
three(R:, ..., Ss) « R: = Rz A R:1 = Ry
three(R:, ..., Ss) « R: = Rz A R:1 = Rs
three(R:, ..., Ss) « R: = R4 A R: = Rs
three(R:i, ..., Ss) « R = Rz n R, = Rs4
three(R:, ..., Ss) « R = Rz n R, = Rs
three(R:, ..., Ss) « R2 = R4 A Rz = Rs
three(R:, ..., Ss) « Rz = R4 A Rs = Rs

Flush class(R., ..., Ss, flush) - flush(R., ..., Ss)
flush(Ry, ..., Ss) « S1 =S, A S; =S3 A S; =S, A S: =S5
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What we will do

1. Download the PHDS dataset and preprocess it

2. Define the symbolic knowledge to inject

3. Train a sub-symbolic predictor - a neural network - on the PHDS dataset
4. Train a second neural network with the symbolic knowledge injected

5. We will inject the knowledge in the loss function

6. Visualise and compare the results of the two predictors
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Jump to the code!

GitHub repository at github.com/MatteoMagnini/demo-2025-woa-nesy/blob/master/notebook/injection.ipynb
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https://github.com/MatteoMagnini/demo-2025-woa-nesy/blob/master/notebook/injection.ipynb
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Taxonomy of SKI methods (pt. 2)

 input knowledge: how is the knowledge to-be-injected represented?
= commonly, some sub-set of first-order logic (FOL)

o target predictor: which predictors can knowledge be injected into?

= mostly, neural networks

e strategy: how does injection actually work?

» guided learning: the input knowledge is used to guide the training process
» structuring: the internal composition of the predictor is (re-)structuredto reflect the input knowledge
= embedding: the input knowledge is convertedinto numeric array form

e purpose: why is knowledge injected in the first place?

» knowledge manipulation: improve / extend / reason about symbol knowledge—subsymbolically
= learning support. improve the sub-symbolic predictor (e.g. speed, size, etc.)
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Discussion

Notable remarks Limitations

e Knowledge should express relations about input-output e Recursive data structures are natively not supported

airs : :
P e extensional representation cost storage

e embedding implies extensional representation of

knowledge e guided learning works poorly with lacking data

e guided learning and structuring support intensional
knowledge

e propositional knowledge implies binarising the 1/0 space
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Future research activities

e foundational
address recursion

e practical
find a language that is a good balance between expressiveness and ease of use

o farget
apply to large language models
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Let’s keep in touch!

The talk is over, | hope you enjoyed it

@ Unibo email
M GitHub

% Linkedin

iiZ Research group


mailto:matteo.magnini@unibo.it
https://github.com/MatteoMagnini
https://www.linkedin.com/in/matteo-magnini/
https://pslab-unibo.github.io/

