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Background

Quick overview on symbolic vs. sub-symbolic Al
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Symbolic vs. Sub-symbolic Al

Two broad categories of Al approaches:
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Why the wording “Symbolic” vs. “Sub-symbolic™? (pt. 1)

Local vs. Distributed Representations

Localist Representation

Distributed Representation
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e Local =~ “symbolic”: each symbol has a clear, distinct meaning

= e.g. "bear" is a symbol denoting a crisp category (either the animal is a
bear or not)

e Distributed = “non-symbolic”: symbols do not have a clear
meaning per se, but the whole representation does

= e.g. "swim" is fuzzy capability: one animal may be (un)able to swim to
some extent

\

Let’s say we need to represent IV classes, how
many columns would the tables have? y




Why the wording “Symbolic” vs. “Sub-symbolic™? (pt. 2)

What is a “symbol” after all? Aren’t numbers symbols too?

According to Tim van Gelder in 1990:

Symbolic representations of knowledge

e involve a set of symbols

e which can be combined (e.g., concatenated) in (possibly) infinitely many ways,

 following precise syntactical rules,

e where both elementary symbols and any admissible combination of them can be assigned with meaning Y,
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https://doi.org/10.1007/978-3-642-76070-9_6

Why “Sub-symbolic” instead of “Non-symbolic” or just “Numerical”?

e There exist approaches where symbols are combined with numbers, e.q.:

= Probabilistic logic programming: where logic statements are combined with probabilities
= Fuzzy logic: where logic statements are combined with degrees of truth
= Bayesian networks: a.k.a. graphical models, where nodes are symbols and edges are conditional dependencies with probabilities, e.qg.

Alarm bus, overs. yes no
on? yes, yes 0.1 0.9

yes, no 0.2 0.8

yes no alarm | yes no no, yes 0.3 0.7
0.9 0.1 yes 0.1 0.9 ne, fa 0.9 0.1

no 0.9 0.1

e These approaches are not purely symbolic, but they are not purely numeric either, so we call the overall category “sub-symbolic”
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Examples of Symbolic Al (pt. 1)

 Logic programming: SLD resolution (e.g., Prolog)

Knowledge representation: Semantic Web (e.g., OWL), Description Logics (e.g., ALC)
Automated reasoning: Theorem proving, Model checking

Planning: STRIPS, PDDL
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Examples of Symbolic Al (pt. 2)

Logic programming with SLD resolution

parent(abraham, isaac). (json(S, jacob)i)
parent(isaac, jacob).
parent(sarah, isaac). %s1 {S=X1,
parent(jacob, joseph). Yl=jacob}
parent(jacob, dan). y
parent(jacob, dinah). (: parent(jacob, X1),
male(X1)

male(abraham).
male(isaac). %p4 /5 %P6
nale(jacob). {X1=josep {leLan} {X1=dina
male(joseph). - !
male(dan). [_male(joseph)l) [;male(dan)lJ ( male(dinah) J
son(X,Y) :- parent(Y,X), %ma {} %m5 {}

male(X). =

/o (e ) (e ) (rarse)

S=joseph S=dan

?- son(S,jacob). |
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Examples of Symbolic Al (pt. 3)

Ontology definition in OWL

<< owl:0Ontology >>
OntologyA
=< owl:ObjectProperty >=
| authorOf :
| | :
<< rdfz::ranga:a:-\J | ; << rdfs:domain>>
. isAbout T thorOf |
Topic I('S 2 Publication |[€&—— Person
name I\ /\
Article b > Book Thesis Researcher
<< owl:disjointWith >>
authorOf
FowlerUML: Book |< Fowler. Researcher
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Examples of Symbolic Al (pt. 4)

Model-checking (as opposed to testing)

Testing Model Checking Legend

States
. covered

. violated
.unknown
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Examples of Symbolic Al (pt. 5)

Planning in STRIPS

Available actions

grab (X): grabs block X from the table

put(X): puts block X on the table

stack(X, Y):stacks block X on top of block Y
unstack(X, Y):un-stacks block X from block Y



What do these symbolic approaches have in common?

Structured representations: knowledge (/0 data) is represented in a structured, formal way (e.qg., logic formulas, ontologies)

Algorithmic manipulation of representations: each approach relies on algorithms that manipulate these structured representations
following exact rules

Crisp semantics: the meaning of the representations is well-defined, and the algorithms produce exact results

= representations are either well-formed or not, algorithms rely on rules which are either applicable or not

e Model-driven: algorithms may commonly work in zero- or few-shot settings, humans must commonly model and encode knowledge in the
target structure

e Clear computational complexity: the decidability, complexity, and tractability of the algorithms are well understood
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Examples of Sub-symbolic Al (pt. 1)

e Machine learning: supervised, unsupervised, and reinforcement learning

= Supervised learning: fitting a discrete (classification) or a continuous function (regression) from examples
s Unsupervised learning: clustering, dimensionality reduction
= Reinforcement learning: learning a policy to maximize a reward signal, via simulation

* Probabilistic reasoning: Bayesian networks, Markov models, probabilistic logic programming
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Examples of Sub-symbolic Al (pt. 2)

Supervised learning

Labeled Data

Prediction
Square
o _, s I
— — 2§
7\
_I—b Triangle

Model Training

Lables

Test Data
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Examples of Sub-symbolic Al (pt. 3)

Supervised learning - Classification vs. Regression (1/2)

Data separation vs. curve fitting:

1.2—
1.0
0.5}
0.6 -

044

0.2 +

‘02 = IO b

! 1 I i !
06 -04 -02 0O 02 04 06 0% 0 20 30 40 50 60 70 %0

classification re,gre,ssion
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Examples of Sub-symbolic Al (pt. &)

Supervised learning - Classification vs. Regression (2/2)

Focus on the target feature:

Classification Data Regression Data

Categorical Numeric
"Labels" Target



Examples of Sub-symbolic Al (pt. 5)

Unsupervised learning - Clustering

) Original unclustered data . Clustered data
5t - 5t
4 - 1 4+
3+ - 3 1
£2F 1 2 2r .
1 - 1
o ° - o °
1k ’ 2 —1F )
23 2 -1 0 1 2 3 4 5 6 23 -2 -1 0 1 2 3 4 5
T T
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Examples of Sub-symbolic Al (pt. 6)

Unsupervised learning - Reinforcement learning (metaphor)

=1
=N ST
Environment

j Re'/'/ard

Interpreter

% o

Agent

Action
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Examples of Sub-symbolic Al (pt. 7)

Reinforcement learning - Reinforcement learning (policy)

1 2 3 4 5
s
1 +1 - +1
6 7 8 9 10 2 +1 -1 +1
@ 3 +1 1 +1
11 13 14 15 4 +1 -1 1
> +1
5 +1 +1
16 18 19 20
23 +1 - -1 +1
21 22 23 24 25 24 +1 - -1 -1
25 +1 +1
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What do these sub-symbolic approaches have in common?

e Numeric representations: knowledge (I/0 data) is represented in a less structured way, often as vectors/matrices/tensors of numbers

 Differentiable manipulation of representations: algorithms rely on mathematical operations involving these numeric representations,
most-commonly undergoing some optimization process

= e.g., sum, product, max, min, etc.

e Fuzzy/continuous semantics: representations are from continuous spaces, where similarities and distances are defined in a continuous
way, and algorithms may vield fuzzy results

e Data-driven + Usage vs. training: algorithms are often trained on data, to be later re-used on other data

= usage is commonly impractical or impossible without training

e Unclear computational complexity: strong reliance on greedy or time-limited optimization methods, lack of theoretical guarantees on the
quality of the results
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Long-standing dualism

Intuition vs. Reasoning

1. Esprit de finesse vs. Esprit de géométrie (Philosophy) — Blaise Pascal, 1669

2. Cognitivevs. Behavioural Psychology — B.F. Skinner, 1950s
3. System 1 (fast, intuitive) vs. System 2 (slow, rational) — Daniel Kahneman, 2011

Sub-symbolic Al

Symbolic Al

e Provides mechanisms emulating human-like intuition e Provides mechanisms emulating human-like reasoning

e Quick, possibly error-prone, but often effective
e Requires learning from data
e Often opaque, hard to interpret or explain
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e Slow, but precise and verifiable
e Requires symbolic modeling and encoding knowledge
e Often transparent, easier to interpret and explain


https://en.wikipedia.org/wiki/Pens%C3%A9es
https://doi.org/10.1111/j.2044-8295.1985.tb01953.x
https://en.wikipedia.org/wiki/Thinking,_Fast_and_Slow

Need for integration

e the NeSy community has long recognized the complementarity among symbolic and sub-symbolic approaches...
e ... with a focus on neural-networks (/NV/N) based sub-symbolic methods, as they are very flexible

Patterns of integration or combination (cf. Bhuyan et al., 2024)
1. Symbolic Neuro-Symbolic: symbols — vectors — NNs — vectors — symbols

] ] 1nvokes
2. Symbolic[Neuro]: symbolic module >» NN — output
. cooperates ] cooperates
3.Neuro | Symbolic: NN > symbolic module > NN — ...
] _ in fluences
4. Neuro-Symbolic - Neuro:symbolic knowledge > NN

constrains
5. Neuro : symbolic knowledge > NN

Symbolic’ ,
] ] embedded in
6. Neuro[Symbolic]: symbolic module > NN
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https://www.nesy-ai.org/
https://link.springer.com/article/10.1007/s00521-024-09960-z

Focus on two main approaches

(cf. Ciatto et al., 2024)

e Symbolic Knowledge Extraction (SKE): extracting symbolic knowledge from sub-symbolic models

= for the sake of explainability and interpretability in machine learning

e Symbolic Knowledge Injection (SK/): injecting symbolic knowledge into sub-symbolic models

= for the sake of frustworthiness and robustnessin machine learning

Both require some basic understanding of how supervised machine learning works
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https://doi.org/10.1145/3645103

Symbolic Knowledge Extraction (SKE)

How to extract symbolic knowledge from sub-symbolic predictors




Definition and Motivation (pt. 1)

~

any algorithmic procedure accepting trained sub-symbolic predictors as input and producing symbolic
knowledge as output, so that the extracted knowledge reflects the behaviour of the predictor with high
fidelity.

j
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Definition and Motivation (pt. 2)

e Explainable Al (XAl): SKE methods are often used to provide explanations for the decisions made by sub-symbolic predictors, making them
more interpretable and understandable to humans (a.k.a. post-hoc explainability)

» [ocal explanations: explanations for individual predictions
» global explanations: explanations for the overall behaviour of the predictor

* Knowledge discovery: SKE methods can help discover patterns and relationships in the data that may not be immediately apparent, thus
providing insights into the underlying processes

e Model compression: SKE methods can simplify complex sub-symbolic models by extracting symbolic rules that approximate their
behaviour, thus reducing the model’s size and complexity
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Explainability vs Interpretability

They are not synonyms in spite of the fact that they are often used interchangeably!

Explanation Interpretation
e elicits relevant aspects of objects (to ease their interpretation) e binds objects with meaning (what the human mind does)
e itis an operation that transform poorly interpretable objects into e itis subjective

more interpretable ones : :
P e it does not need to be measurable, only comparisons

e search of a surrogate interpretable model
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Concepts

Main entities and how to extract symbolic knowledge from sub-symbolic predictors
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Entities

Sub-symbolic predictor Symbolic knowledge

Logic Rule

sepal. Length

setosa > Class = setosa — PetalWidth < 1.0

Class = versicolor — PetalLength > 4.9 A

Sepal. Width SepalWidth € [2.9, 3.2]

| Class = versicolor — PetalWidth > 1.6
versicolor

Class = virginica — SepalWidth <2.9

Petal.Length

Class = virginica — SepalLength € [5.4, 6.3]

Class = virginica — PetalWidth € [1.0, 1.6]

virginica

Petal.Width

Error: 0.346668 Steps: 26926
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How SKE works

Decompositional SKE

if the method needs to inspect (even partially) the
internal parameters of the underlying black-box
predictor, e.g., neuron biases or connection weights
for NNs, or support vectors for SVMs
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Pedagogical SKE

~

if the algorithm does not need to take into account
any internal parameter, but it can extract symbolic

knowledge by only relying on the predictor’s
outputs.

J




CART (pt. 1)

Classification and regression trees (cf. Breiman et al., 1984)

* absent & present

start »= 8.57
~start >= 147
1 e
age < 4.67 =
E =
[T -
age >= 9.27
o
0.00) (000> 058
36% 15% 17% 9% 239,

An example decision tree estimating the probability of kyphosis after spinal surgery, given the age of the patient and the vertebra at which
surgery was start ed (rf. wiki:dt-learning). Notice that all decision trees subtend a partition of the input space, and that those trees
themselves provide intelligible representations of how predictions are attained.
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https://doi.org/10.1201/9781315139470
https://en.wikipedia.org/w/index.php?title=Decision_tree_learning

CART (pt. 2)

1. generate a synthetic dataset by using the predictions of the sub-symbolic predictor
2. train a decision tree on the synthetic dataset
3. compute the fidelity and repeat step 2 until satisfied

4. [optional] rewrite the tree as a set of symbolic rules
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Adult classification task (pt. 1)

The Adult dataset (cf. Becker Barry and Kohavi Ronny, 1996) contains the records (48,842) of individuals based on census data (this dataset is
also known as Census Income). The dataset has many features (14) related to the individuals’ demographics, such as age, education, and
occupation. The target feature is whether the individual earns more than $50, 000 per year.

Examples of Adult records
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age workclass education hours-per-week native-country income
39 State-gov Bachelors ... 40 United-States <=50K
50 Self-emp-not-inc Bachelors ... 13 United-States <=50K
38 Private HS-grad 40 United-States <=50K
53  Private 11th 40 United-States <=50K
28  Private Bachelors 40 Cuba <=50K
37  Private Masters 40 United-States <=50K
49  Private 9th 16 Jamaica <=50K
52 Self-emp-not-inc HS-grad 45 United-States >50K
31  Private Masters 50 United-States >50K
42  Private Bachelors 40 United-States >50K


https://doi.org/10.24432/C5XW20

Adult classification task (pt. 2)

We can train a simple feed-forward neural network for a fixed amount of epoches on the Adult dataset to classify whether an individual earns
more than $50, 000 per year.

class AdultNet(nn.Module): def train_model() — tuple[nn.Module, list[float]]:
def __init__(self): model = AdultNet()
super().__init__() model.to(device)
self.model = nn.Sequential( optimizer = optim.Adam(model.parameters(), 1r=0.001)
nn.Linear (FEATURE_NUMBER, HIDDEN_SIZE), criterion = nn.CrossEntropyLoss()
nn.ReLU(), train_losses = []
nn.Linear (HIDDEN_SIZE, HIDDEN_SIZE), for epoch in range(EPOCHES) :
nn.ReLU(), model.train()
nn.Linear (HIDDEN_SIZE, CLASS_NUMBER) optimizer.zero_grad()
) output = model(X_train_tensor)
loss = criterion(output, y_train_tensor)
def forward(self, x): loss.backward()
return self.model(x) optimizer.step()

train_losses.append(loss.item())
if (epoch + 1) % 10 = 0 or epoch = EPOCHES - 1:
print(f"Epoch {epoch+1}: loss = {loss.item():.4f}")
return model, train_losses
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Adult classification task (pt. 3)

Training Loss Over Epochs

0.701 SciKitLearn classification report

—— Training Loss

0.65

060 4 Class Precision Recall F1-Score  Support
0.55 <=50K 0.867812 0.935882 0.900562 24.720
g 050 >50K 0.731447 0.550568 0.628247 7.841

Accuracy 0.843094 32.561

0.45

Macro Avg 0.799629 0.743225 0.764405 32.561

0.40

Weighted Avg 0.834974 0.843094 0.834986 32.561

0.35

! ! ! ! ! ! ! ! !
0] 25 50 75 100 125 150 175 200
Epochs
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Extracted rules (pt. 1)

Decision Rules

Extracted Symbolic Rules:

samples
value = [26659, 5902]

Class = <2 50K 1. class =0 if education £ 12.5 and capital-gain = 3048
———— education <= 12.50 2.class =1 if education < 12.5 and capital-gain > 3048
— capital—gain <= 3048.00 3.class =0 if education > 12.5 and occupation = 0.5 and
capialgan <= 35690 |___ class: 0 hours-per-week < 31
valoe 2 (3388, 710] L capital—gain > 3048.00 4. class =1 if education > 12.5 and occupation < 0.5 and
. hours-per-week > 31
|__T class: 1 5.class =0 if education > 12.5 and occupation > 0.5 and
——— education > 12.50 capital-gain = 3869 and occupation = 4.5
- occupation <= 0.50 6. class =1 if education > 12.5 and occupation > 0.5 and
——— hours—-per-week <= 31.00 capital-gain < 3869 and occupation > 4.5
I——— class: 0 7.class =1 if education > 12.5 and occupation > 0.5 and
——— hours-per-week > 31.00 capital-gain > 3869
|-— class: 1

——— occupation > 0.50

——— capital-gain <= 3869.00
——— occupation <= 4.50
|-—— class: 0
——— occupation > 4.50
|-—— class: 1
——— capital-gain > 3869.00
——— class: 1
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Extracted rules (pt. 2)

Fidelity of the symbolic predictor

Class Precision Recall F1-Score Support
0 0.97 0.98 0.97 26659
1 0.89 0.84 0.86 5902
Accuracy 0.95 32561
Macro Avg 0.93 0.91 0.92 32561

Weighted Avg 0.95 0.95 0.95 32561
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Jupyter notebook available here

github.com/MatteoMagnini/demo-2025-woa-nesy/blob/master/notebook/extraction.ipynb
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https://github.com/MatteoMagnini/demo-2025-woa-nesy/blob/master/notebook/extraction.ipynb

Taxonomy of SKE methods (pt. 1)

SKE

[Translucency [TargetAI Task ] Input data ] Output Knowledge ]

[Pedagogical ] [Decompositional ] [Classification ] [Regression ] Binary | [Expressiveness ]

X X

Discrete |

| SVM ANN Propositional ] I Rule List |

A[Continous ] k
‘ DTE ANN3 Fuzzy [Decision Tree J
| LC

|

| . [ .. ]
ANN4 Oblique Decision Table
S < |

M-of-N

gl E
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Taxonomy of SKE methods (pt. 2)

Target Al task Input data
e classification e binary
f: X CR - Fs.t.|%| =k Z =0,1r
® regression e discrete
f: ZCR — % CRnm Z Ex,..., T

e continuous

Z CRo
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Taxonomy of SKE methods (pt. 3)

Shape Expressiveness

e rule list, ordered sequences of if-then-else rules e propositional, boolean statements + logic connectives, including

.. : : : . . arithmetic comparisons among variables and constants
e decision tree, hierarchical set of if-then-else rules involving a

comparison among a variable and a constant e fuzzy, hierarchical set of if-then-else rules involving a comparison

- . . . among a variable and a constant
e decision table, 2D tables summarising decisions for each possible g

assignment of the input variables e obligue, boolean statements + logic connectives + arithmetic
comparisons

e M-of-N, any of the above + statements of the form “at least k of
the following statements are true”
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Discussion

Notable remarks Limitations

e discretisation of the input space  many methods for tabular data as input, very few for images

o discretisation of the output space e high dimensional datasets could lead to poorly readable rules
o features should have semantic meaning e high variable input spaces could do the same

e rules constitutes global explanations
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Symbolic Knowledge Injection (SKI)

How to inject symbolic knowledge into sub-symbolic predictors




Definition and Motivation (pt. 1)

~

Any algorithmic procedure affecting how sub-symbolic predictors draw their inferences in such a way that
predictions are either computed as a function of, or made consistent with, some given symbolic knowledge.

/
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Definition and Motivation (pt. 2)

* Improve predictive performance: by injecting symbolic knowledge, we can

= guide the learning process in order to penalise inconsistencies with the symbolic knowledge, or
» structure the model’s architecture to mimic the symbolic knowledge

e Enhance interpretability: with SKI we can make predictors that are

= interpretable by transparent box design, as they are built to mimic symbolic knowledge
= interpretable using symbols as constraints, as they are built to respect symbolic knowledge

* Robustness to data degradation: symbolic knowledge can help sub-symbolic models maintain performance even in the presence of noisy
or scarcity of data

e Enhance fairness: by incorporating symbolic knowledge about fairness constraints, we can ensure that sub-symbolic models make
decisions that align with ethical considerations

e And more: SKI can simplify the predictor’s architecture, in particular it can reduce the number of weights in a neural network, thus
improving its efficiency and reducing the risk of overfitting
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Concepts

Main entities and how to inject symbolic knowledge into sub-symbolic predictors
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Entities

Predictor: a sub-symbolic model that makes predictions based on input data, usually a neural network

Symbolic knowledge: structured, formal knowledge that can be represented in a symbolic form. The most common forms of symbolic
knowledge are

» Propositional logic, simple rules with if-then structure
» Datalog, a subset of first-order logic with no function symbols, only constants and variables

e Fuzzification: the process of converting symbolic knowledge into a form that can be used by sub-symbolic predictors, e.g. by assigning
degrees of truth to symbolic statements

Injector: the main component that injects symbolic knowledge into the predictor, by modifying its architecture, its training process or by
other means
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Knowledge Injection via Network Structuring (KINS)

(ref. Magnini et al., 2023)
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https://doi.org/10.1093/LOGCOM/EXAD037

Fuzzification

Formula C.interpretation Formula C. interpretation
[—¢l]  n(1-{[¢]]) ¢ < 9] (1 + [[4]] — [l¢]])
(¢ Al n(min({[g]], [[#]])) [class(X,y;) < ¢]] [[¥]]"

¢ VY]] n(max([|¢]], [[4]])) [expr(X)]] expr([[X]])

¢ =4l n(l-(e# ¥)) [truel] 1

¢ # ¥l n(llle]] - [[ 111 |false|] 0

¢ > 9] n(max(0, 3 +[[¢]] - [[¥]])) [X]] z

¢ > 9] n(l+ [[¢]]—[[ 1]) |K]] k

(¢ <9]] n(max(0, 3 + [[¥]] = [4]])) [[p(X)]]* (31 V...V thg]]

* encodes the value for the ¢*® output ** assuming p is defined by k clauses of the form:
p(X) <« ¥y, ..., p(X) < Yy
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Injector (pt.1)



ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

DEPARTMENT
OF COMPUTER SCIENCE
AND ENGINEERING

Injector (pt. 2)




Knowledge Injection via Lambda Layer (KILL)

(ref. Magnini et al., 2022)
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Fuzzification

Formula C.interpretation Formula C. interpretation
[-¢l]  n(1—{[¢]]) [¢ < 9] n(l[¢l] — [[¥]])
(@A)l n(max([[¢]], [[¥]]))  [class(X,y;) < ] [[¢]]"

(¢ VY]] n(min(([e]], [[4]]))  [expr(X)]] expr([[X]])

¢ =4l adllel] - [l¥]) [truel] 0

¢ # Y]] [[-(¢ =)]] |false]] 1

(>4l (g — [+  [X]] z

¢ >4] (Y]] - [le]]) %] k

o <9l n(z+o] -] [PpE)* [t V.. V]

* encodes the penalty for the 7*® neuron **
p(X) — ’(,bl, c o

assuming predicate p is defined by k clauses of the form:

~

}




Injector (pt.1)

Cost function: whenever the neural network wrongly predicts a class and violates the prior knowledge a cost proportional to the violation is
added. In this way the output of the network differs more from the expected one and this affects the back propagation step.

Y' = f(Y,cost)
f=Y x (1 + cost)

cost(X,Y) =n(p(X)—(1—-Y)) (1 —Y because 0 means true)
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PHDS classification task

id S1 R1 S2 R2 S3 R3 S4 R4 S5 R5 class
1 1 10 1 11 1 13 1 12 1 1 9
2 2 11 2 13 2 10 2 12 2 1 9
3 3 12 3 11 3 13 3 10 3 1 9
4 4 10 4 11 4 1 4 13 4 12 9
The poker hand data set (PHDS) (cf. Cattral Robert and 5 4 1 4 13 4 12 4 11 4 10 9
Oppacher Franz, 2002) 6 1 2 1 4 1 5 1 3 1 6 8
e Each record represents one poker hand r 9 1t 121 101 111 15 8
e 5 cards identified by 2 values: suit and rank 8 2 1 2 2 2 3 2 &% 2 5 8
9 3 5 3 6 3 9 3 7 3 8 8
e Classes: 10
10 4 1 4 4 4 2 4 3 4 5 8
e Training set: 25,010 11 1 1 2 1 3 9 41 5 2 3 1
e Test set: 1,000,000 12 2 6 2 1 L 13 2 4 L9 0
13 1 10 4 6 1 2 1 1 3 8 0
14 2 13 2 1 4 4 1 5 2 11 O
15 3 8 4 12 3 9 4 2 3 2 1
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Poker Hand Training Set Class Distribution

An unbalanced dataset

Poker Hand Test Set Class Distribution
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Logic rules to inject (pt. 1)

Class Logic Formulation

Pair class(R:, ..., Ss, pair) - pair(Ri, ..., Ss)

pair(R:, ..., Ss) « R1 = R:
pair(R:, ..., Ss) « R:1 = Rs
pair(R:, ..., Ss) « R: = R4
pair(R:, ..., Ss) « R: = Rs
pair(R:i, ..., Ss) <« R, = Rs
pair(R:, ..., Ss) <« R, = R4
pair(R:, ..., Ss) <« R2 = Rs
pair(Ri, ..., Ss) —« Rs = R4
pair(R:, ..., Ss) « Rs = Rs
pair(R:i, ..., Ss) « R4 = Rs
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Logic rules to inject (pt. 2)

Class Logic Formulation

Two Pairs class(R., ., Ss, two) - two(R., ..., Ss)
two(Rs, ..., Ss) <« R: = R2 A Rs = Ry
two(R1, ..., Ss) <« R1 = Rz A R2 = Ry
two(R:, ..., Ss) « R: = Rs A R = Rs
two(R:, ..., Ss) « R: = R2 A R:s = Rs
two(R:, ..., Ss) « R: = Rs A Rs = Rs
two(R:, ..., Ss) « R. = Rs A R, = Rs
tWO(R1, cee g Ss) — R1 = R2 A Rs = Rs
two(R:, ..., Ss) « R: = Rs A R = Rs
two(R:, ..., Ss) « R: = Rs A R, = Ry
two(R:, ..., Ss) « R: = Rs A Rs = Rs
two(Rs, ..., Ss) « R: = Rs A Rs = Rs
two(R:1, ..., Ss) <« R1 = Rs A Rz = Ry
two(R:, ..., Ss) « R = Rz A Rs = Rs
two(R:, ..., Ss) « R = Rs A R:s = Rs
two(R:, ..., Ss) « R = Rs n Rs = R,
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Logic rules to inject (pt. 3)

Class Logic Formulation

Three of a Kind class(R., ..., Ss, three) — three(R:, ..., Ss)
three(R:, ..., Ss) « R = R n R: = R;
three(R:, ..., Ss) « R: = R A R:1 = R4
three(R:, ..., Ss) « R1 = R2 A R:1 = Rs
three(R:, ..., Ss) « R: = Rs A R: = Ry
three(R:, ..., Ss) « R = Rs A R: = Rs
three(R:, ..., Ss) « R: = R4 n R: = Rs
three(R:, ..., Ss) « R2 = Rz n R, = Ry
three(R:, ..., Ss) « R2 = Rz A R2 = Rs
three(R:, ..., Ss) « Rz = R4 A R, = Rs
three(R:, ..., Ss) « Rs = R A Rs = Rs

Flush class(R:, ..., — flush(R:, ..., Ss)
flUSh(R1, cee g Ss) « S1 =S, A S:1 =S3 AS;: =S4 A S; =S5

p)
(3]
-
—h
~
c
7))
=
\
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class PokerNet(nn.Module):
def __init__(self):
super().__init__ Q)
self.model = nn.Sequential(
nn.Linear (FEATURE_NUMBER, HIDDEN_SIZE),
nn.ReLU(),
nn.Linear (HIDDEN_SIZE, HIDDEN_SIZE),
nn.ReLU(),
nn.Linear (HIDDEN_SIZE, CLASS_NUMBER)

)

def forward(self, x):
return self.model(x)

DEPARTMENT
ALMA MATER STUDIORUM | OF COMPUTER SCIENCE
UNIVERSITA DI BOLOGNA | AND ENGINEERING

Training the models (pt. 1)

def

def

rule_high_card(x_batch_orig, pred_logits):

ranks = x_batch_orig[:, 1::2].int() # Extract ranks from the input

num_pairs = count_occurrences(ranks, 2) # Count occurrences of pairs
is_high_card = (num_pairs = 0) # Check if there are no pairs

prob_high_card = torch.softmax(pred_logits, dim=1)[:, O] # Probability of "H.
penalty = ((1 - prob_high_card) ** 2) * is_high_card.float() # Calculate pen:
return penalty.mean()

rule_one_pair(x_batch_orig, pred_logits):

ranks = x_batch_orig[:, 1::2]1.int() # Extract ranks from the input

num_pairs = count_occurrences(ranks, 2) # Count occurrences of pairs
is_one_pair = (num_pairs = 1) # Check if there is exactly one pair
prob_one_pair = torch.softmax(pred_logits, dim=1)[:, 11 # Probability of "Oni
penalty = ((1 - prob_one_pair) ** 2) * is_one_pair.float() # Calculate penal
return penalty.mean()
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Loss

Training the models (pt. 2)

Loss History
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Jupyter notebook available here

github.com/MatteoMagnini/demo-2025-woa-nesy/blob/master/notebook/injection.ipynb
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Taxonomy of SKI methods (pt. 2)

 input knowledge: how is the knowledge to-be-injected represented?
= commonly, some sub-set of first-order logic (FOL)

o target predictor: which predictors can knowledge be injected into?

= mostly, neural networks

e strategy: how does injection actually work?

» guided learning: the input knowledge is used to guide the training process
» structuring: the internal composition of the predictor is (re-)structuredto reflect the input knowledge
= embedding: the input knowledge is convertedinto numeric array form

e purpose: why is knowledge injected in the first place?

» knowledge manipulation: improve / extend / reason about symbol knowledge—subsymbolically
= learning support. improve the sub-symbolic predictor (e.g. speed, size, etc.)
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Discussion

Notable remarks Limitations
e Knowledge should express relations about input-output pairs e Recursive data structures are natively not supported
e embedding implies extensional representation of knowledge e extensional representation cost storage
e guided learning and structuring support intensional knowledge e guided learning works poorly with lacking data

propositional knowledge implies binarising the I/0 space
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NeSy applications with LLMs

Last recent works on Neural-Symbolic Al involve Large Language Models
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LLMs as oracles for instantiating ontologies with domain-specific knowledge

(ref. Ciatto et al., 2025)
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Results

Table 4

Feature-based comparison between KGFuLer and state-of-the-art KG construction meth-
ods. The arrow (—) denotes the best-featured method from the literature, namely
Harvest, which we compare with KGFuiier under a performance-based perspective.

Method Document  Training Construction Prompt Consistency
Free Templating Q (Best —)

KGFILLER - GPT 3.5 Turbo
KGFILLER - Nous Hermes
Harvest - RoBERTa Base
Harvest - RoBERTa Large
Harvest - BERT Large Cased

[70]
[58]
[55]

[46]
[47]
[54]
[56]

[49]
[50]
[51]
[53]

[48]
[57]
—[59]

RRE (Best )

RIE (Best <)

0.0 0.2 0.4 0.6 0.8 1.0

[71]

[72] Fig. 4. Comparison of the performance of Harvest [59] and KGFnier w.r.t. the task

Ours of populating our food ontology (cf. Section 4.1). For KGFuier, the best-performing
(KGFLER) closed-source and open-source LLM models are considered — respectively GPT 3.5
Turbo and Nous Hermes.
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Actively Learning EL Terminologies from LLMs (pt. 1)

(ref. Magnini et al., 2025)

Can cat be considered
a subcategory of
mammal that
eats meat?

Mammal M
Jeats.Meat
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An equivalence query is true
or false. If false, the teacher
provides a counterexample.

Thing Football Player C

— Game dplays.Game
L Ball Game

L Football

— Person
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L— Football Player
L— Team

L— Football Team



https://doi.org/10.3233/FAIA251009

Actively Learning EL Terminologies from LLMs (pt. 2)

Start Initialise Add

® hypothesis »1 equivalence [ counter-
ontology

example

Got
counter-
example?

Strengthen
counter-
example
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Experiments and Results (pt. 1)

Ontology Nc Np Log.Ax. PAC Sample Poss. Ax.

Animals 17 4 12 542 6,936
Cell 22 0 24 1,119 10,164
Football 10 3 9 341 1,500
Generations 20 4 18 847 10,800
University 7 3 4 139 588

Ontology statistics and PAC sample sizes with e = 0.2 and v = 0.1.

N¢ and Ng are the number of concept and role names occurring in
the ontologies.
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Ontology Accuracy Recall Precision F1-Score
Animals 0.737 0.858 0.381 0.428
Cell 0.391 0.733 0.206 0.284
Football 0.553 0.890 0.422 0.477
Generations 0.691 0.658 0.564 0.476
University 0.622 0.629 0.313 0.302

Results of ExactLearner+LLM grouped by ontologies.



Experiments and Results (pt. 2)

Model Accuracy Recall Precision F1-Score Prompt Type Accuracy Recall Precision F1-Score
Llama2 (13b) 0.521 0.71  0.294 0.314 M. OWL Syntax 0.34 0.93 0.165 0.262
Llama3 (8b) 0.43 0.947 0.218 0.333 Natural Language 0.751 0.811 0.414 0.511
Mistral (7b) 0.741 0.747 0.45 0.49 A. M. OWL Syntax 0.537 0.767 0.326 0.347
Mixtral (47b) 0.705 0.611 0.547 0.436 A. Natural Language 0.767 0.506 0.603 0.454

Results of ExactLearner+LLM grouped by models. Results of ExactLearner+LLM grouped by prompts.
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| hope you enjoyed the talk!

Let’s keep in touch!

#@ @ matteo.magnini@unibo.it

£ matteo.magnini0O@gmail.com
M github.com/MatteoMagnini

% www.linkedin.com/in/matteo-magnini/
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