

An Empirical Study on the Robustness of Knowledge Injection Techniques Against Data Degradation

Andrea Rafanelli^{a,b} Matteo Magnini^c Andrea Agiollo^c
Giovanni Ciatto^c Andrea Omicini^c

^aDipartimento di Informatica – Università di Pisa

^bDipartimento di Informatica – Scienza e Ingegneria e Matematica – Università dell'Aquila
andrea.rafanelli@phd.unipi.it

^cDipartimento di Informatica – Scienza e Ingegneria
ALMA MATER STUDIORUM – Università di Bologna

{*matteo.magnini*, *andrea.agiollo*, *giovanni.ciatto*, *andrea.omicini*}@unibo.it

25th Workshop “From Objects to Agents”
8th-10th July, 2024, Forte di Bard (Italy)

Outline

1 Context & Motivation

2 Methodology

3 Experiments

4 Conclusions

Next in Line...

1 Context & Motivation

2 Methodology

3 Experiments

4 Conclusions

SKI in Intelligent Agents

- sub-symbolic approaches – e.g., neural networks (NNs) – enabled computational agents with smart behaviours such as speech recognition [8], object detection [10] and more
- autonomous agents' knowledge represented *symbolically* both at the conceptual and technological level
- requirement for integration of *sub-symbolic* components inside autonomous intelligent agents
- *neuro-symbolic* integration (NeSy) in agents emerged as a solution [2, 3]
- *symbolic knowledge injection* (SKI) [4] most promising NeSy technique for agents

Background on SKI

SKI definition

any *algorithmic* procedure affecting how sub-symbolic predictors draw their inferences in such a way that predictions are either *computed* as a function of, or made *consistent* with, some *given* symbolic knowledge

- symbolic knowledge represent agent's beliefs, well-known concepts, societal norm or any desirable rule for the sub-symbolic system to be considered
- symbolic knowledge as logic rules, knowledge graphs, expert knowledge, etc.
- SKI attained by modifying the NN structure, altering the training process, or extending the training data to take into account the symbolic knowledge

Advantages and issues of SKI

SKI advantages

- less data required to train (gather information from injected knowledge)
- less time required to train (fewer concepts to learn from data)
- more trustworthy (outcome following injected knowledge)
- more robust to data corruption (repair information using injected knowledge)

Current lack in SKI

- measuring robustness of injection mechanisms is crucial for developing neuro-symbolic agents
- lack of trustworthiness measurements in SKI [1]

Paper context

Idea

focus on SKI, present comprehensive modelling of new *robustness* metric

Robustness definition

resilience of SKI training over imperfect, bugged or missing data

Next in Line...

1 Context & Motivation

2 Methodology

3 Experiments

4 Conclusions

Robustness definition

Key idea

injection is *robust* if predictive performance of educated predictor is poorly affected by *perturbations* of training data, as long as small perturbation *magnitude*

Data perturbation

altering training dataset D by **adding**, **removing**, or **editing** its entries

- denote the perturbed dataset as $D' = D \circ \Delta D$
- denote by $\|\Delta D\| \in \mathbb{R}_{\geq 0}$ the *magnitude of the perturbation*

Robustness score definition

Robustness score

$$\rho_{N,D}(\mathbf{D}) = \frac{1}{n} \sum_{\Delta D \in \mathbf{D}} \|\Delta D\| \cdot \frac{\pi(N_{\Delta D}, D \circ \Delta D)}{\pi(N, D)} \quad (1)$$

- $\mathbf{D} = \{\Delta D_1, \dots, \Delta D_n\}$ set of data perturbations applied to D
- N the predictor trained on D
- $N_{\Delta D}$ the same predictor trained on the perturbed dataset $D \circ \Delta D$
- π is a performance metric of choice, such as accuracy

SKI Robustness gain definition

Injection robustness measured by applying Equation (1) to educated predictor $\hat{N} = \mathcal{I}(N, K, D)$, attained injecting the knowledge K , on some uneducated predictor N , then trained upon D

Robustness gain

$$R_{N,D}(\mathcal{I}) = \frac{\rho_{\hat{N},D}(\mathbf{D})}{\rho_{N,D}(\mathbf{D})} \quad (2)$$

- $R_{N,D}(\mathcal{I}) > 1$ indicates the injection mechanism \mathcal{I} produces a more robust predictor
- injection mechanisms suffering data perturbations result in $R_{N,D}(\mathcal{I}) < 1$
- $R_{N,D}(\mathcal{I})$ is easy-to-understand measure for analysing robustness quality of a SKI mechanism

Measuring data perturbations

- $\rho_{N,D}(\mathbf{D})$ requires measuring the magnitude $\|\Delta D\|$
- measure $\|\Delta D\|$ by measuring the *difference* among two datasets A, B
- leverage on the Kullback-Leibler (KL) divergence [5]

$$\psi(A, B) = \frac{1}{2} \left[\text{tr}(\boldsymbol{\sigma}_B^{-1} \boldsymbol{\sigma}_A) - \dim(A) + \ln \left(\frac{\det \boldsymbol{\sigma}_B}{\det \boldsymbol{\sigma}_A} \right) + (\boldsymbol{\mu}_B - \boldsymbol{\mu}_A)^\top \boldsymbol{\sigma}_B^{-1} (\boldsymbol{\mu}_B - \boldsymbol{\mu}_A) \right]$$

- KL divergence computed per-class $A = A_1 \cup \dots \cup A_K$ and $B = B_1 \cup \dots \cup B_K$, then

$$\Psi(A, B) = \frac{1}{|A|} \sum_{k=1}^K \psi(A_k, B_k) \cdot |A_k|$$

Data perturbation measure

$$\|\Delta D\| = \Psi(D, D') \tag{3}$$

Next in Line...

1 Context & Motivation

2 Methodology

3 Experiments

4 Conclusions

Experiments setup I

Datasets

- **Breast Cancer:** BCW contain 699 instances of breast cancer clinical exams with benign and malignant classes
- **Splice Junction:** PSJGS dataset contain 3,190 gene sequence instances and has three classes
- **Census Income:** CI dataset contain 48,842 instances representing individuals with binary classes representing person income

SKI methods

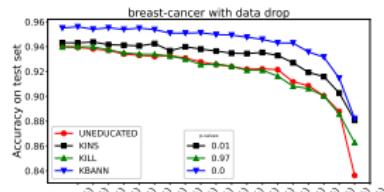
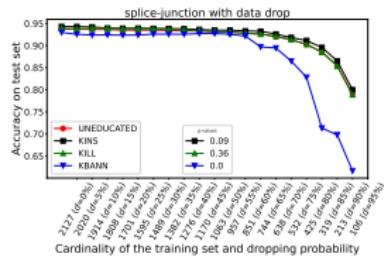
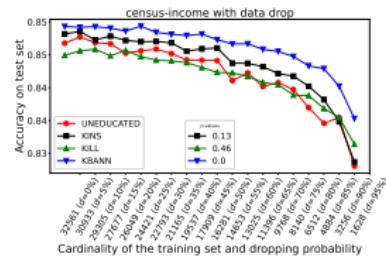
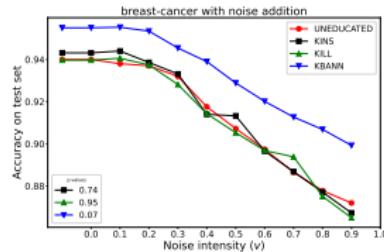
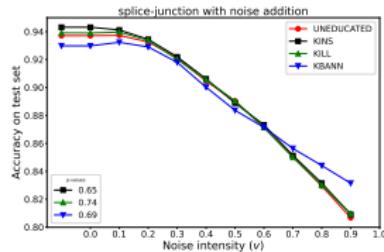
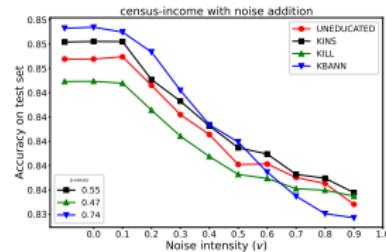
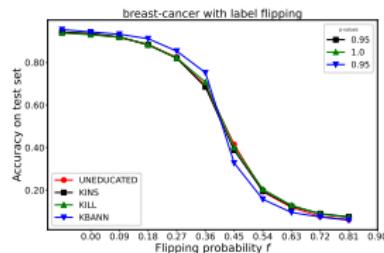
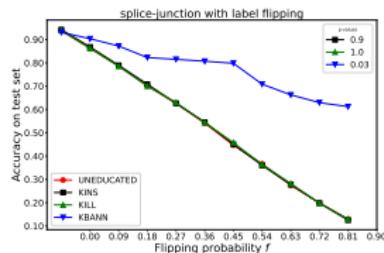
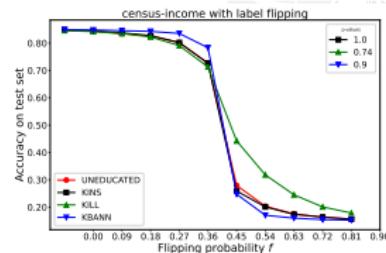
- **KINS**, Knowledge Injection via Network Structuring [6]
- **KILL**, Knowledge Injection via Lambda Layer [7]
- **KBANN**, Knowledge-Based Artificial Neural Network [9]

Experiments setup II

Data perturbation strategies

- **Sample Drop:** mimics the effect of an intelligent agent lacking training data. Aims at selectively mutilating a dataset.
- **Noise Addition:** mimics situation where data acquisition process of the autonomous agent is affected by error. Aims at degrading a dataset in a *controlled* way.
- **Label flipping:** mimics situation where data labelling process is affected by error. Selectively flipping labels of some entries in a dataset.

Experiments results I



Experiments results II

Dataset	$R_{N,D}(\mathcal{I})$ drop			$R_{N,D}(\mathcal{I})$ noise			$R_{N,D}(\mathcal{I})$ flip		
	KINS	KILL	KBANN	KINS	KILL	KBANN	KINS	KILL	KBANN
BCW	1.0493	1.0318	1.0382	0.9960	0.9985	1.0109	0.9994	1.0184	0.9520
PSJGS	1.0045	0.9968	0.8425	0.9950	0.9984	1.0145	0.9962	1.0026	1.6749
CI	0.9998	1.0039	1.0043	0.9992	1.0012	0.9965	0.9897	1.1703	0.9815

Findings

- SKI heightened robustness when data is limited (alternate guidance of integrated knowledge)
- loss-manipulating SKI better tolerate label corruptions (deemphasise flawed labels during backpropagation)
- SKI structuring methods more robust than constrained-layer types (injected knowledge kept intact)

Next in Line...

1 Context & Motivation

2 Methodology

3 Experiments

4 Conclusions

Summing up

Contributions

- propose novel metric for robustness of SKI
- define three data perturbation strategies and perturbation metric
- robustness gain measure to assess whether SKI is better than its uneducated counterpart
- experimental evaluation of our robustness score metric over different datasets, injectors and perturbations
- showcase SKI robustness for label corruption

An Empirical Study on the Robustness of Knowledge Injection Techniques Against Data Degradation

Andrea Rafanelli^{a,b} Matteo Magnini^c Andrea Agiollo^c
Giovanni Ciatto^c Andrea Omicini^c

^aDipartimento di Informatica – Università di Pisa

^bDipartimento di Informatica – Scienza e Ingegneria e Matematica – Università dell'Aquila
andrea.rafanelli@phd.unipi.it

^cDipartimento di Informatica – Scienza e Ingegneria
ALMA MATER STUDIORUM – Università di Bologna

{*matteo.magnini*, *andrea.agiollo*, *giovanni.ciatto*, *andrea.omicini*}@unibo.it

25th Workshop “From Objects to Agents”
8th-10th July, 2024, Forte di Bard (Italy)

References I

[1] Andrea Agiollo and Andrea Omicini.
Measuring trustworthiness in neuro-symbolic integration.
In *Proceedings of the 18th Conference on Computer Science and Intelligence Systems*, volume 35 of *Annals of Computer Sciences and Information Systems*, pages 1–10, September 2023.

[2] Andrea Agiollo, Andrea Rafanelli, Matteo Magnini, Giovanni Ciatto, and Andrea Omicini.
Symbolic knowledge injection meets intelligent agents: QoS metrics and experiments.
Autonomous Agents and Multi-Agent Systems, 37(2):27:1–27:30, June 2023.

[3] Andrea Agiollo, Andrea Rafanelli, and Andrea Omicini.
Towards quality-of-service metrics for symbolic knowledge injection.
In Angelo Ferrando and Viviana Mascardi, editors, *WOA 2022 – 23rd Workshop “From Objects to Agents”*, volume 3261 of *CEUR Workshop Proceedings*, pages 30–47, November 2022.

[4] Giovanni Ciatto, Federico Sabbatini, Andrea Agiollo, Matteo Magnini, and Andrea Omicini.
Symbolic knowledge extraction and injection with sub-symbolic predictors: A systematic literature review.
ACM Computing Surveys, 56(6):161:1–161:35, June 2024.

[5] James M. Joyce.
Kullback-Leibler divergence.
In Miodrag Lovric, editor, *International Encyclopedia of Statistical Science*, pages 720–722. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[6] Matteo Magnini, Giovanni Ciatto, and Andrea Omicini.
KINS: Knowledge injection via network structuring.
In Roberta Calegari, Giovanni Ciatto, and Andrea Omicini, editors, *CILC 2022 – Italian Conference on Computational Logic*, volume 3204 of *CEUR Workshop Proceedings*, pages 254–267, 2022.

References II

[7] Matteo Magnini, Giovanni Ciatto, and Andrea Omicini.
A view to a KILL: Knowledge injection via lambda layer.
In Angelo Ferrando and Viviana Mascardi, editors, *WOA 2022 – 23rd Workshop “From Objects to Agents”*, volume 3261 of *CEUR Workshop Proceedings*, pages 61–76. Sun SITE Central Europe, RWTH Aachen University, November 2022.

[8] Ali Bou Nassif, Ismail Shahin, Imtinan Basem Attili, Mohammad Azzeh, and Khaled Shaalan.
Speech Recognition Using Deep Neural Networks: A Systematic Review.
IEEE Access, 7:19143–19165, 2019.

[9] Geoffrey G. Towell, Jude W. Shavlik, and Michiel O. Noordewier.
Refinement of approximate domain theories by knowledge-based neural networks.
Proceedings of the 8th National Conference on Artificial Intelligence, pages 861–866, 1990.

[10] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu.
Object Detection With Deep Learning: A Review.
IEEE Transactions on Neural Networks and Learning Systems, 30(11):3212–3232, 2019.