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SKI in Intelligent Agents

@ sub-symbolic approaches — e.g., neural networks (NNs) — enabled
computational agents with smart behaviours such as speech
recognition [8], object detection [10] and more

@ autonomous agents’ knowledge represented symbolically both at the
conceptual and technological level

@ requirement for integration of sub-symbolic components inside
autonomous intelligent agents

@ neuro-symbolic integration (NeSy) in agents emerged as a
solution [2, 3]

e symbolic knowledge injection (SKI) [4] most promising NeSy
technique for agents
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Background on SKI

SKI definition

any algorithmic procedure affecting how sub-symbolic predictors draw
their inferences in such a way that predictions are either computed as a
function of, or made consistent with, some given symbolic knowledge

@ symbolic knowledge represent agent’s beliefs, well-known concepts,
societal norm or any desirable rule for the sub-symbolic system to be
considered

@ symbolic knowledge as logic rules, knowledge graphs, expert
knowledge, etc.

@ SKI attained by modifying the NN structure, altering the training
process, or extending the training data to take into account the
symbolic knowledge
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Advantages and issues of SKI

SKI advantages

@ less data required to train (gather information from injected
knowledge)

less time required to train (fewer concepts to learn from data)

more trustworthy (outcome following injected knowledge)

more robust to data corruption (repair information using injected
knowledge)

@ measuring robustness of injection mechanisms is crucial for developing
neuro-symbolic agents

lack of trustworthiness measurements in SKI [1]
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Context & Motivation

Paper context

focus on SKI, present comprehensive modelling of new robustness metric

4

Robustness definition

resilience of SKI training over imperfect, bugged or missing data
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Methodology

Robustness definition

Key idea

injection is robust if predictive performance of educated predictor is poorly
affected by perturbations of training data, as long as small perturbation
magnitude

Data perturbation

altering training dataset D by adding, removing, or editing its entries
@ denote the perturbed dataset as D' = D o AD
@ denote by ||[AD|| € R>q the magnitude of the perturbation
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Methodology

Robustness score definition

Robustness score

i 1 F(NAD, DOAD)
pno(D) = 3 [1AD] - == (1)
ADeD

D = {AD;,...,AD,} set of data perturbations applied to D
N the predictor trained on D
Nap the same predictor trained on the perturbed dataset D o AD

7 is a performance metric of choice, such as accuracy

Rafanelli et al. SKI Robustness WOA 2024 8/16



SKI Robustness gain definition

Injection robustness measured by applying Equation (1) to educated
predictor N = Z(N, K, D), attained injecting the knowledge K, on some
uneducated predictor N, then trained upon D

Robustness gain

Rn,p(Z) = p’i (2)

e Ry.p(Z) > 1 indicates the injection mechanism Z produces a more
robust predictor

@ injection mechanisms suffering data perturbations result in
RN,D(I) <1

® Ry .p(Z) is easy-to-understand measure for analysing robustness
quality of a SKI mechanism
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Methodology

Measuring data perturbations

e pn.p(D) requires measuring the magnitude [|AD||
@ measure ||AD|| by measuring the difference among two datasets A, B
o leverage on the Kullback-Leibler (KL) divergence [5]

detog
detoy

V(A B) = 3 [ir(o5 o)~ dim(A) +1n (222 4 (ns—pa) "5 (w—ua)]

o KL divergence computed per-class A= A; U...U Ak and
B=BiU...UBkg, then

Data perturbation measure

|AD|| = w(D, D") (3)
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Experiments

Experiments setup |

Datasets

@ Breast Cancer: BCW contain 699 instances of breast cancer clinical
exams with benign and malignant classes

@ Splice Junction: PSJGS dataset contain 3,190 gene sequence
instances and has three classes

@ Census Income: Cl dataset contain 48,842 instances representing
individuals with binary classes representing person income

e KINS, Knowledge Injection via Network Structuring [6]

e KILL, Knowledge Injection via Lambda Layer [7]
e KBANN, Knowledge-Based Artificial Neural Network [9]
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Experiments

Experiments setup Il

Data perturbation strategies

@ Sample Drop: mimics the effect of an intelligent agent lacking
training data. Aims at selectively mutilating a dataset.

@ Noise Addition: mimics situation where data acquisition process of
the autonomous agent is affected by error. Aims at degrading a
dataset in a controlled way. ‘

o Label flipping: mimics situation where data labelling process is ,
affected by error. Selectively flipping labels of some entries in a
dataset. }
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Experiments

Experiments results |
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Experiments results |l

Dataset RN_D(I) drop RN>D(I) noise RN1D(I) f|ip

KINS KILL KBANN KINS KILL KBANN KINS KILL KBANN
BCW 1.0493 1.0318 1.0382 | 0.9960 0.9985 1.0109 | 0.9994 1.0184  0.9520
PSJGS || 1.0045 0.9968 0.8425 | 0.9950 0.9984 1.0145 | 0.9962 1.0026 1.6749
Cl 0.9998 1.0039 1.0043 | 0.9992 1.0012  0.9965 | 0.9897 1.1703  0.9815

@ SKI heightened robustness when data is limited (alternate guidance of |

integrated knowledge)

|

@ loss-manipulating SKI better tolerate label corruptions (deemphasise
flawed labels during backpropagation)

@ SKI structuring methods more robust than constrained-layer types
(injected knowledge kept intact)
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Conclusions

Summing up

Contributions
@ propose novel metric for robustness of SKI
o define three data perturbation strategies and perturbation metric

@ robustness gain measure to assess whether SKI is better than its
uneducated counterpart

@ experimental evaluation of our robustness score metric over different
datasets, injectors and perturbations

@ showcase SKI robustness for label corruption
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