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Motivation & Context

Context I

Intersectional Fairness:

looking at multiple intersecting sensitive features
gender and ethnicity → black women, Hispanic men, etc.
age, education, gender → old men with high-school diploma, etc.

and mitigate bias!
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Motivation & Context

Context II

Intersectional Fairness:

looking at multiple intersecting sensitive features
gender and ethnicity → black women, Hispanic men, etc.
age, education, gender → old men with high-school diploma, etc.

and mitigate bias!
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Motivation & Context

Context III

Intersectional Fairness:

looking at multiple intersecting sensitive features
gender and ethnicity → black women, Hispanic men, etc.
age, education, gender → old men with high-school diploma, etc.

and mitigate bias!

Magnini et al. (UniBo) Mitigating Intersectional Fairness AIMMES, 2024 4 / 16



Motivation & Context

Context IV

3 ways to mitigate bias:

pre-processing → operations on the dataset
in-processing → modify the model’s (usually a NN) error function
post-processing → adjust the results of the trained model
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Motivation & Context

Context V

3 ways to mitigate bias:

pre-processing → operations on the dataset
in-processing → modify the model’s (usually a NN) error function
post-processing → adjust the results of the trained model
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Motivation & Context

Context VI

3 ways to mitigate bias:

pre-processing → operations on the dataset
in-processing → modify the model’s (usually a NN) error function
post-processing → adjust the results of the trained model
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Motivation & Context

Motivation I

The number of subgroups grows exponentially as the number of protected
attributes increases!

a group is an unique value of a predefined attribute (e.g., women)
the amount of subgroups is the Cartesian product of all possible
protected groups
we need to compute a fairness metric for each of them (e.g.,
differential fairness)
→ with many protected attributes the execution time explodes!
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Motivation & Context

Motivation II

The number of subgroups grows exponentially as the number of protected
attributes increases!
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Theory & idea
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Theory & idea

Theory

Interesting theory properties:
reducing bias in subgroups =⇒ less bias in groups! [Filippi et al., 2023]

mitigating bias in groups ≠⇒ less bias in subgroups
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Theory & idea

Idea

Even if by the theory mitigating bias in groups does not necessarily imply
less bias in subgroups:

in actual practice this could happen anyway
if so, there would be an enormous gain in terms of less computational
time cost → from exponential to linear!
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Experiments & results
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Experiments & results

Experiments

We validated our approach on the well known Adult
dataset. [Becker and Kohavi, 1996]

we tried multiple configurations (both linear and exponential in
computational cost)
we also compared to one of the state-of-the-art algorithm, namely
DF-Classifier [Foulds et al., 2020]
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Experiments & results

Results & Future works I

Surprisingly the performance of the models trained with methods that have
a linear cost are comparable with the other models.
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Experiments & results

Results & Future works II

As expected, the actual computation time to train for an epoch the NN is
way much lower if we consider only the groups.

Methods
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Experiments & results

Results & Future works III

As expected, the actual computation time to train for an epoch the NN is
way much lower if we consider only the groups.
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Experiments & results

Results & Future works IV

Promising direction but:
1 need to test on actually real-world dataset (not Adult)
2 consider more protected attributes
3 validate on other fairness metrics
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