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Context |

Intersectional Fairness:

o looking at multiple intersecting sensitive features

» gender and ethnicity — black women, Hispanic men, etc.
» age, education, gender — old men with high-school diploma, etc.

# and mitigate bias!

o
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Context 1V

3 ways to mitigate bias:

® pre-processing — operations on the dataset

v
O
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Context V

3 ways to mitigate bias:

® post-processing — adjust the results of the trained model
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Context VI

3 ways to mitigate bias:

® in-processing — modify the model’s (usually a NN) error function
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Motivation & Context

Motivation |

The number of subgroups grows exponentially as the number of protected
attributes increases!

® a group is an unique value of a predefined attribute (e.g., women)

» the amount of subgroups is the Cartesian product of all possible
protected groups

* we need to compute a fairness metric for each of them (e.g
differential fairness)

— with many protected attributes the execution time explod
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Theory

Interesting theory properties:

» reducing bias in subgroups = less bias in groups! [Filipei et al. 2023]

® mitigating bias in groups =4 less bias in subgroups

o
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Even if by the theory mitigating bias in groups does not necessarily imply
less bias in subgroups:

® in actual practice this could happen anyway

o if so, there would be an enormous gain in terms of less computati ‘E)
time cost — from exponential to linear!

o
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Experiments & results

Experiments

We validated our approach on the well known Adult
dataset. [Becker and Kohavi, 1996]
» we tried multiple configurations (both linear and exponential in
computational cost)

!
» we also compared to one of the state-of-the-art algorithm, nam "E
DF-CIaSSiﬁer [Foulds et al., 2020]

o
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Experiments & results

Results & Future works |

Surprisingly the performance of the models trained with methods that have
a linear cost are comparable with the other models.

Accuracy vs Differential Fairness

Accuracy
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Experiments & results

Results & Future works |l

As expected, the actual computation time to train for an epoch the NN is
way much lower if we consider only the groups.

Average time per epoch
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Experiments & results

Results & Future works 11

As expected, the actual computation time to train for an epoch the NN is
way much lower if we consider only the groups.

Magnini et al. (UniBo) Mitigating Intersectional Fairness



Results & Future works |V

Promising direction but:
® need to test on actually real-world dataset (not Adult)

® consider more protected attributes

® validate on other fairness metrics

o
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