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Motivation & Context

Context

Players involved in a Machine Learning workflow:

Data
! require labels

Knowledge
human experts
common sense
extracted from data/models

Model
trained on data
sometimes also trained with prior knowledge
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Motivation & Context

Utopy and Reality I
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Motivation & Context

Utopy and Reality II
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Motivation & Context

Utopy and Reality III

But in some scenarios we deal with both low data/labels and knowledge. . .
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Motivation & Context

Transfer Learning I

Reuse the knowledge acquired in a similar task! [Tan et al., 2018]
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Motivation & Context

Transfer Learning II
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Motivation & Context

Transfer Learning III

What kind of knowledge?
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Motivation & Context

Transfer Learning IV

What kind of knowledge?

Typically model parameters (NN weights) → sub-symbolic knowledge
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Motivation & Context

Transfer Learning V

source: [Yang et al., 2019]
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Symbolic Transfer Learning Framework

Limitations of Sub-symbolic TL

Opaqueness [Brachman and Levesque, 2004]

! sub-symbolic knowledge/model is not interpretable by humans

Why it (does not) works?
we have no guarantees on what happens under the hood
fails when tasks are different
fails when there are biases in the data

Magnini (UniBo) Symbolic Transfer Learning DC KR 2023 12 / 21



Symbolic Transfer Learning Framework

Symbolic TL I

A not exhaustive list of benefits of symbolic knowledge: [Besold et al., 2017]

Interpretability
! symbolic knowledge is understandable by both humans and machines

Concision
intensional representation
natural support to recursion

Lingua Franca
no bound to a specific class of models
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Symbolic Transfer Learning Framework

Symbolic TL II
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Where we are now

Next in Line. . .

1 Motivation & Context

2 Symbolic Transfer Learning Framework

3 Where we are now

4 Where we are going

Magnini (UniBo) Symbolic Transfer Learning DC KR 2023 14 / 21



Where we are now

Symbolic Knowledge Extraction I

Extract symbolic knowledge from a sub-symbolic model: [Guidotti et al., 2019]

Families
pedagogical → model agnostic
decompositional → model inspection

Logical Rules
propositional logic
first-order logic
other logics

Scope
global explanations
local explanations
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Where we are now

Symbolic Knowledge Extraction II

→

Class = setosa← PetalWidth ≤ 1.0.

Class = versicolor←
PetalLength > 4.9 ∧ SepalWidth ∈ [2.9, 3.2].

Class = versicolor← PetalWidth > 1.6.

Class = virginica← SepalWidth ≤ 2.9.

Class = virginica← SepalLength ∈ [5.4, 6.3].

Class = virginica← PetalWidth ∈ [1.0, 1.6].
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Where we are now

Symbolic Knowledge Injection I

Inject symbolic knowledge into a sub-symbolic model: [von Rueden et al., 2021]

Families
constraining → loss function
structuring → model architecture
alternatively keep model(s) and knowledge separate

Logical Rules
propositional logic
first-order logic
other logics
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Where we are now

Symbolic Knowledge Injection II
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Where we are going
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Where we are going

Open Problems

1 What is in between?
it is rare to be able to use the extracted knowledge as is
different tasks may require different representations

2 Full recursive concept support?
formal logic can represent recursive predicates
sub-symbolic models like NN (based on backpropagation) are direct
acyclic graphs

3 Evaluation
accuracy is not the only dimension
need for other metrics (e.g., interpretability, robustness) [Agiollo et al., 2023]

4 Technological support
public and maintained tools for symbolic knowledge extraction and
injection [Sabbatini et al., 2021, Magnini et al., 2022]
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Where we are going

Working Plan

1 Design knowledge manipulation methods:
similar tasks
→ partially affects variables and constants
dissimilar tasks
→ affects all the knowledge
→ inductive logic programming [Muggleton, 1991]

2 Design injection methods to fully support recursion:
new symbolic knowledge injection methods
→ the knowledge is actually injected into the model
but also neuro-symbolic approaches
→ model(s) and knowledge are two distinct entities of the system
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