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Context

Players involved in a Machine Learning workflow:

e Data
I' require labels

o Knowledge

e human experts
* common sense
» extracted from data/models

e Model

e trained on data
» sometimes also trained with prior knowledge
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But in some scenarios we deal with both low data/labels and knowledge. ..
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Reuse the knowledge acquired in a similar task! [Tan et 2l 2018]
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What kind of knowledge?
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What kind of knowledge?

Typically model parameters (NN weights) — sub-symbolic knowledge
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Neural network 1

} Parameter transferring
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arget domain: military objects Neural network 2 Retraining

source: [Yang et al., 2019]
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Limitations of Sub-symbolic TL

s Opaqueness [Brachman and Levesque, 2004]

I' sub-symbolic knowledge/model is not interpretable by humans

e Why it (does not) works?

« we have no guarantees on what happens under the hood
« fails when tasks are different
« fails when there are biases in the data
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A not exhaustive list of benefits of symbolic knowledge: [Beseld et 2l 2017]

o Interpretability

I' symbolic knowledge is understandable by both humans and machines

e Concision

» intensional representation
» natural support to recursion

e Lingua Franca
» no bound to a specific class of models
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Symbolic Knowledge Extraction |

Extract symbolic knowledge from a sub-symbolic model: [Guidetti et al., 2019]

e Families

» pedagogical — model agnostic
o decompositional — model inspection

e Logical Rules
» propositional logic
« first-order logic
» other logics

e Scope
« global explanations
o local explanations
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Class = setosa < PetalWidth < 1.0.
Sepal.Length
sefosa Class = versicolor «+
PetalLength > 4.9 A SepalWidth € [2.9, 3.2].

Sepal. Widtl
Class = versicolor < PetalWidth > 1.6.

PetalLength ‘ _ X Class = virginica - SepalWidth < 2.9.

Class = virginica < SepallLength € [5.4, 6.3].

Petal.Width

Class = virginica < PetalWidth € [1.0, 1.6].

Error: 0.346668 Steps: 26926

Magnini (UniBo) Symbolic Transfer Learning DC KR 2023 16 /21



Symbolic Knowledge Injection |

Inject symbolic knowledge into a sub-symbolic model: [von Rueden et al., 2021]

e Families

» constraining — loss function
» structuring — model architecture
» alternatively keep model(s) and knowledge separate

» Logical Rules
» propositional logic
« first-order logic
» other logics
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Open Problems

® What is in between?

e it is rare to be able to use the extracted knowledge as is
» different tasks may require different representations

® Full recursive concept support?

« formal logic can represent recursive predicates
» sub-symbolic models like NN (based on backpropagation) are direct
acyclic graphs

© Evaluation

» accuracy is not the only dimension
« need for other metrics (e.g., interpretability, robustness) [Agiello et al. 2023]

@ Technological support

« public and maintained tools for symbolic knowledge extraction and
injection [Sabbatini et al., 2021, Magnini et al., 2022]
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Working Plan

® Design knowledge manipulation methods:
o similar tasks
— partially affects variables and constants
o dissimilar tasks
— affects all the knowledge
— inductive logic programming [Museleton. 1991]

® Design injection methods to fully support recursion:

« new symbolic knowledge injection methods
— the knowledge is actually injected into the model
» but also neuro-symbolic approaches
— model(s) and knowledge are two distinct entities of the system
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