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Al, ML & XAl

Drivers & Limitations |

Socio-political requirements
@ both individuals and human organisations rely more and more upon
artificial systems
e which are delegated increasingly-complex functions, tasks, and goals
that human processes depend upon
o artificial systems are nowadays required to
e understand the context, the users, and the goals of the system itself,

and behave accordingly
e operate autonomously in dynamic environments
e work with physically-sparse components, each one placed in its own

physical location
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Al, ML & XAl

Drivers & Limitations Il

e drawing from the aforementioned requirements, we can see that the
main drivers for the engineering of artificial systems nowadays are
e intelligence
e autonomy
e physical distribution

@ today we obviously focus on intelligence as our main line

o possibile keeping in mind the other two for any future reference
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Al, ML & XAl

Drivers & Limitations ||

@ Dually, artificial systems are also ideally required to
e to be trustable by humans—so, transparent, understandable,
accountable, ... for human users
e respect human autonomy at their core, possibly mitigating their own

autonomous behaviour, and supporting human users in their choices
and deliberations

e be non-intrusive, both physically and cognitively, while respecting and
protecting privacy and safety of human users

o Yet, we are far far away from there
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Where is Al from? |

@ understanding how intelligence works is a persistent issue for humans
e Aristotle’s logics is the most outstanding example of that
@ “understanding”, for humans, typically means to be able to model and
reproduce
@ building machines that can reproduce intelligence

o either as by reproducing some known intelligent process
e or by reproducing some observed intelligent behaviour

is a way to measure how much we do understand the way in which
intelligence works
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Where is Al from? |l

The birth of Al

o the dualism between Al as intelligent behaviour and Al as intelligent
process was already there in Al since the very beginning
@ Dartmouth College, New Hampshire, USA — Summer School, 1956
e John McCarthy invites all scholars interested in computing towards
intelligence
@ among those

e Marvin Minsky, co-founder of Al Lab at MIT

o Alan Newell, Herb Simon, authors of Logic Theorist (an automatic
theorem prover)—likely the first Al program

e John McCarthy, inventor of LISP, the first programming language for
Al

o the term “Artificial Intelligence” was actually coined there, to describe
the overall new field of research
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General Al |

General purpose Al
@ building general-purpose intelligence machines is the goal of General Al

@ we do have a poor understanding of human intelligence, and of
intelligence in general

o early Al focussed then on intelligent components

Components of intelligence

perception

problem solving & planning
reasoning

machine learning

natural language understanding
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General Al Il

Perception
@ understanding the environment
@ through sensors of any sort
o interpreting the overall situation
| one of the most difficult task of Al

Problem solving & planning
@ devising a course of actions towards a goal

@ based on a repertoire of actions

e e.g., playing games
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General Al 11

Machine learning

@ learning from data
@ building models (e.g., classification)
e making predictions

e e.g., face recognition through training

A

Reasoning

@ representing knowledge

@ inferring new knowledge from available one

@ in a consistent and robust way
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General Al IV

Natural language understanding
@ ability to understand human languages
@ either spoken or written
@ possibly engage in conversations with humans

| currently the main focus of the natural language processing (NLP)
field
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Al, ML & XAl

Al: The Contemporary Era |

1 — Grand DARPA Challenges

@ where Al and autonomous systems shared their first success

@ race for autonomous vehicles in the desert of Nevada (2005)

e won by STANLEY, a converted Volkswagen Touareg,
equipped with seven onboard computers, interpreting sensor data from
GPS, laser rangefinders, radar, and video feed

@ the sudden global attention towards autonomous cars came from this
very stream
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Al: The Contemporary Era Il

2 — Alpha Go: Triumph of MLIS!ver et ! 2016]

@ in 2014 DeepMind demonstrated a system learning how to play arcade
games just looking at the video and accessing the scores, using the
same controls as humans

e acquired by Google, they built Alpha Go, which beat Go champion Lee
Sedol 4 to 1 in 2016

@ exploiting deep neural networks along with self-training

@ Go search space is so huge that brute force just does not work: so, it
was considered impossible for a machine to beat a human at Go
@ so, this also made everybody know that there were no known limits to
the ability that machine intelligent could reach

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAl BPER, 2023/05/05 13 /191



Al: The Contemporary Era Il

ML: Three factor for success
@ scientific breakthroughs—deep learning dealing with complex problems
@ training requires lots of data—nowadays data are hugely available

@ training requires computational power—nowadays computational
power is more and more available
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Al: The Contemporary Era IV

3 — ChatGPT and Beyond: Generative Al

@ “classic” Al techniques mostly deal with analysing or acting on existing
data

e e.g., expert systems, built upon knowledge bases and an inference
engine generating content via an if-else rule database
@ generative Al includes instead techniques
that can generate novel content, using mechanisms like probabilistic
machine learning
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Al, ML & XAl

Al: The Contemporary Era V
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Al, ML & XAl

Intelligent Socio-Technical Systems

@ in the realm of intelligent systems, nowadays, humans are legitimate
components in the same way as software and physical agents

@ where both human and software agents accounts for activity,
knowledge, intelligence, goals, learning, ...

@ as legitimate components of intelligent socio-technical systems

@ so that now the fundamental question becomes

? how are we going to shape the interaction between heterogeneous
intelligent components within intelligent socio-technical systems?

77 e.g., is NLP the answer?
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People Need to Understand Systems

@ human users rely more and more on intelligent systems for their
everyday activities, as well as for critical aspects such as health and
money

@ humans and intelligent agents work together in intelligent
socio-technical systems to produce overall intelligent behaviour

e.g. decision support systems exploit intelligent systems in order to promote
rational human decisions

— information and actions by intelligent agents need to be
understandable by humans to be accepted and trusted

— humans need explanations

@ which is where explainable artificial intelligence (XAl) comes
from
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Why Don't Humans Understand Intelligent Systems?

@ the technical XAl problem in short
e symbolic approaches are transparent yet slow—e.g., computational
logic
e sub-symbolic approaches are fast yet opaque—e.g., deep learning
@ so, symbolic / sub-symbolic integration is the most promising way out
e and, everyone is already doing that
@ yet: integration how?
e based on what integration model?
o which conceptual foundation for integrating symbolic / sub-symbolic
techniques within a coherent intelligent system model / architecture?
e and mostly, how do we keep the benefits of both without the
drawbacks?
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Al, ML & XAl

Explanation Everywhere

@ the notion of explanation is the core of many research efforts

e along with accessory notions such as interpretation and
understandability

@ and undergone a constant flow of diverse and (sometimes) even
extravagant definitions

e eg., even GDPR recognises “the citizens'
right to explanation”

@ most encompassing in the same acceptation of the term ‘explanation’
both the explanator and the explainee acts

I' the dialectical notion of explanation

@ whereas a notion of explanation as an explanator’s act is where we
mostly insist today

e so that we can focus on the cognitive process of the explainee
e and on the technical side of our intelligent systems, as well
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Al, ML & XAl

Explanation as Representation & Transformation

@ contribution from math teaching
e being math the most difficult subject to explain & teach
@ a semiotic representation is required whenever the object of an
explanation is inaccessible to perception
noetics — conceptual acquisition of an object
semiotics — acquisition of a representation built out of signs
@ explaining a concept via different semiotic representations
transformation of treatment — changing representation within the
same register of semiotics
transformation of conversion — changing register of semiotics for the
representation
@ explanation as
o first, generation of semiotic representation
e then, transformation of semiotic register
o finally, sharing of the transformed representation

| explainers share their cognitive process with explainees as explanation
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Al, ML & XAl

Humans Share Knowledge

@ it is not brain size (or whatever like that) that separates humans from
other intelligent animals like primates

e instead, it is mostly our will to share knowledge
@ in general, knowledge sharing is a peculiar trait of humanity

e it is how we do understand each other

e it is how we learn

e it is the foundation of human society

e where human culture is a cumulative one

e.g. human science is a shared social construct

o scientific artefacts are required to be understandable for the community
@ so as to enable reproducibility and refutability in the scientific
process
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Sharing is Rational

@ there is intelligence without representation and without
reason

e yet, human cumulative culture is based on representation
tools—Ilanguage, writing, books, the Web

@ repeatable, systematic sharing requires rational representation
e even when we are sharing intuitive, implicit knowledge

@ and, sharing implicit knowledge typically calls for rational explanation
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Cognition is (Not Just) Rational

Rationality vs. intuition

00 Behavior I
@ two sorts of cognitive processes T
e esprit de finesse vs. esprit de
. P . . A Iyti 1 Intuiti
géométrie—rationality has I gl | | nrartve I
. . 7
limits T l
e cognitivism against behaviourism in I Implicit
led K led
psychology (Declarative (Procedural
Memory) Memory)

@ concepts and distinctions not born in the CS / Al fields
e surely not in the ML community

@ yet, they roughly match the two main families of Al techniques
e symbolic vs. sub-/non-symbolic
o informally, classic Al vs. ML-based Al

@ and, the two sides of today intelligent systems

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAl BPER, 2023/05/05 24 /191



Al, ML & XAl

Focus on ML

o (Mostly) in ML, we let machines learn specific tasks from data

o through the production of numeric predictors, a.k.a. black-boxes
e instead of programming those tasks ourselves

@ Unfortunately, black boxes are inherently

e opaque w.r.t. the knowledge they acquire from data
o sub-optimal in performance, as they are trained to minimise errors
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Al, ML & XAl

Opaqueness

Opaqueness of ML-based predictors brings several
drawbacks:
o difficulty in understanding what a black box has learned from data
e.g. “snowy background” problem
o difficulty in spotting “bugs” in what a numeric predictor has learned
o because that knowledge is not explicitly represented
@ several blatant failures of ML-based systems reported so far
e.g. black people classified as gorillas

e.g. wolves classified because of snowy background
e.g. unfair decisions in automated legal systems

o lawmakers recognised citizens' right to meaningful
explanations

e about the logic behind automated decision making
e.g. in General Data Protection Regulation (GDPR)
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The Problem with ML-based Al

Trustworthiness {

How can we trust machines we do not fully control?

I

Controllability ‘

How can we control machines we do not fully understand?

1

Understandability

How can we understand distributed, numeric representations of knowledge?
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The eXplanable Al (XAl) Approach

The XAl community is nowadays facing those understandability issues

Tod ay Task
¥ vy * Why did you do that?
i Decision or * Why not something else?
Traini MaCh!ne L d Recommendation * When do you succeed?
raining Learnin earne )
Data g Function * When do you fail?
Process * When can I trust you?
* Howdo I correct an
User error?
XAI Task
* Y + Lunderstand why
New + [understand why not
Training |,| Machine [ |Explainable |Explanation * Tknow when you succeed
Data Learning Model Interface * Tknow when you fail
Process » I know when to trustyou
* I know why you erred
User
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XAl Background
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© XAl Background
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XAl Background Overview on XAl

Focus on. ..

@ Overview on XAl
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Overview on XAl
Relevant Questions for XAl

@ What are we trying to explain?

@ in general, Al-based systems

@ Who is in charge of producing explanations?

@ the Al system itself? human experts? ordinary users?

© To whom are explanations addressed?

@ humans (developers, end users)? other Al systems?

@ How are we going to create explanations?
@ this is the actual core of XAl research

© Which are the most adequate sorts of explanation?
@ this depends on the answers to the questions above

@ When should explanations be presented to the user?

@ this, too, depends on the answers to the questions above
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Overview on XAl
Current Practice of XAl

© What are we trying to explain?
e mostly data-driven, ML-powered systems

@ Who is in charge of producing explanations?
o Al experts, data scientists, ML engineers

© To whom are explanations addressed?
e people having a certain degree of expertise in Al/ML

@ How are we going to create explanations?
e via task-, model-, and data-specific algorithms

© Which are the most adequate sorts of explanation?

o depends on task, model, data, and consumer at hand
e other than on the available XAl algorithms

@ When should explanations be presented to the user?
e mostly in the training phase; possibly in inference phase
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Overview on XAl
The Future of XAl

@ What are we trying to explain?
e any system including computational agents with some degree of
autonomy
@ Who is in charge of producing explanations?
o the system, i.e., the agents themselves
© To whom are explanations addressed?
e people with diverse levels of expertise
e other computational agents
@ How are we going to create explanations?
e via task-, model-, and data-specific algorithms
o plus consumer-specific presentation strategies
© Which are the most adequate sorts of explanation?
o the ones which better adapt to the needs of the user
@ When should explanations be presented to the user?
e upon request—i.e., as part of a dialogue

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAl BPER, 2023/05/05 33/191



PUNREIEILNNE I XAl Nowadays

Focus on. ..

o XAl Nowadays
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Galllon o
Explain What? |

Most efforts are devoted to supervised ML, and in particular:

@ specific sorts of tasks, e.g. classification and regression

@ specific sorts of data, e.g. images, text, or tables
@ specific sorts of predictors, e.g. neural networks, SVM
i.e. essentially, functions of the form f : X CR" — Y C R™

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAl BPER, 2023/05/05 35/191



Galllon o
Explain What? [l

Interpretability—Predictivity trade-off:
O Generalised linear models

O Decision trees

O K Nearest Neighbours

O Random Forest

O Support Vector Machines

Interpretability

O XGboost

O Neural Networks

Predictive Performance
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Galllon o
Explain What? IlI

Conventionally. . .

@ ...linear models, or decision trees/rules are considered interpretable
@ ...other kinds of predictors are considered poorly interpretable
o hence in need of explanation
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Galllon o
Explain What? IV

Our focus is on supervised ML, but XAl is wider than that

explainable unsupervised learning—e.g., clustering

explainable reinforcement learning (XRL)

°
@ explainable planning (XAIP)

o explainable agents and robots (XMAS)
°
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XAl Background XAl for Supervised ML

Focus on. ..

o XAl for Supervised ML
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PRI XAl for Supervised ML

Global vs. Local Explanations |

Global explanation

@ How does a predictor produce its outcomes in general?
e.g. how does a neural network classify images of animals?

.

Local explanation

o How did a predictor produce a particular outcome?
e.g. why did the neural network classify that image as a cat?

|
|
)
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XAl Background XAl for Supervised ML

Global vs. Local Explanations |l

About the global/local dichotomy

o firstly introduced in [Ribeiro et al., 2016]

@ along with LIME, i.e. one of the earliest and most successful XAl
techniques
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XAl Background XAl for Supervised ML

Global vs. Local Explanations Il

)
+ +l
+ 1 .
-i O
I
I
l Ld
]
Figure: [Ribeiro et al., 2016] Toy example to present intuition for LIME. The black-box model’s
complex decision function f (unknown to LIME) is represented by the blue/pink background,
which cannot be approximated well by a linear model. The bold red cross is the instance being
explained. LIME samples instances, gets predictions using f, and weighs them by the proximity

to the instance being explained (represented here by size). The dashed line is the learned
explanation that is locally (but not globally) faithful.
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XAl Background XAl for Supervised ML

Overview on XAl approaches |

Four major approaches

OPEN THE BLACK
BOX PROBLEMS
BLACK BOX TRANSPARENT
EXPLANATION BOX DESIGN
MODEL OUTCOME MODEL
EXPLANATION EXPLANATION INSPECTION

About notation

@ “model” ~ “predictor”
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XAl Background XAl for Supervised ML

Overview on XAl approaches |l

Model explanation (= global explanation)

explanation = interpretable predictor trained to mimic the one to be
explained
@ w.r.t. the entire input space
e.g. surrogate models (e.g. decision trees)

R, : IF{Outlock = Sunny) AND
(Windy= False) THEN Play=Yes
R, : IFOutlook = Sunny) AND

TesT INTERPRETABLE g T T o
. utiook = Overcast
sTANCEs|  * | BLACKBOX oo > | TN Playtes
PREDICTOR R, : IFOutlook = Rainy) AND

(Humidity= High) THEN Play=No
R; : IFOutlook = Rainy) AND
(Humidity= Normal) THEN Play=Yes
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XAl Background XAl for Supervised ML

Overview on XAl approaches IlI

Outcome explanation (= local explanation)

explanation = interpretable predictor trained to mimic the one to be
explained
@ w.r.t. a small portion of the input space
e.g. saliency maps—e.g. LIME ,

SHAP
INTERPRETABLE
TEST R,: IF(Outiook = Sunny) AND
INSTANGE || BLACKBOX |——> PRlé([JJ(\;CA#OR > | (lindy=False) THEN Play=Yes
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XAl Background XAl for Supervised ML

Overview on XAl approaches IV

Model inspection

explanation = representation summarising the behaviour of the predictor
to be explained
@ w.r.t. a given portion of the input space (or, possibly, all
of it)

e.g. feature importance, sensitivity analysis

———| BLACKBOX [ —

TEST VISUAL . L/ :
INSTANCES REPRENTATION ,
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XAl Background XAl for Supervised ML

Overview on XAl approaches V

Transparent box design

@ just train an interpretable predictor and look at it

Magnini, Ciatto, Omicini (UniBo)

TRAINING | INTERPRETABLE | INTERPRETABLE
SET LEARNER PREDICTOR
A
TEST |
INSTANCE

Gentle Introduction to XAl

R, : IF{Outlook = Sunny) AND
(Windy= False) THEN Play=Yes

R, : IFOutlook = Sunny) AND
(Windy= True) THEN Play=No

R, : IFOutlook = Overcas)

THEN Play=Yes

R, : IF{Outlook = Rainy) AND
(Humidity= High) THEN Play=No

R; : IF{Outlook = Rainy) AND
(Humidity= Normal) THEN Play=Yes
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XAl Background Interpretation vs. Explanation

Focus on. ..

@ Interpretation vs. Explanation
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XAl Background Interpretation vs. Explanation

Interpretation or Explanation?

The two terms are not synonyms

@ in spite of the fact that they are often used interchangeably

interpretation =& binding objects with meaning

o that is what the human mind does

explanation = eliciting relevant aspects of objects—to ease their
interpretation
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XAl Background Interpretation vs. Explanation

The Role of Representations

Leci nest s une fufie .

I this is just a representation of a pipe
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XAl Background Interpretation vs. Explanation

An Abstract Framework for XAl

X object to be explained

A observer agent
Ia() a function “measuring” the “degree of interpretability” of X, w.r.t. A
E(-) an explanation function, mapping objects into (different) objects

X' the result of the explanation, i.e. a more-interpretable object
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Interpretation vs. Explanation
An Abstract Framework for XAl [

Key points
@ interpretation is subjective
@ explanation is an operation transforming poorly interpretable objects
into more-interpretable ones

@ ‘interpretability’ does not need to be measurable (only comparisons
matter)
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Interpretation vs. Explanation
An Abstract Framework for XAl [1

In the particular case of ML-based Al:
M' = E(M)

R = r(M)
I,(R) - I,(R) > €
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Interpretation vs. Explanation
An Abstract Framework for XAl [V

@ we need to explain a model M

o having a poorly interpretable representation R (w.r.t. A)
@ explanation produces another model M’

e having an interpretable representation R’ (w.r.t. A)

e performance difference among M and M’ (i.e. Af(M,M’)) must be
small (< ¢)

e or, dually, M" must have an high fidelity w.r.t. M

@ explanation & search of a surrogate interpretable model

@ representation is important as much as explanation

@ explanation must maximise fidelit
p y
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XAl Background Interpretation vs. Explanation

The Role of Interaction

N A

1 Query(Q) @ explanation as an interaction protocol

Recommendation (Q, R)
H Why? (Q, R)

e among an explainer/recommender
e and explainee

i
>

QF T MoreDetails(Q,R,E) .

'Why, Uncl
Undlear(Q,R.E) ™™ noear

Collision(Q,R,E,

@ possibly repeating the protocol several
times ...

‘Disapprove(Q,R,E, F)

F @ ...until selecting the
explanation/representation which better
suits the explainee

Reccommendation (R')

[Collision, Disapprove]

Y

S i ma S Y O —

|:|' Accept(Q,R,E)

¢
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Explanations via Feature Importance

Next in Line. ..

© Explanations via Feature Importance
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Explanations via Feature Importance

Overview |

Insight

@ quantify each input feature's contribution to

a single prediction (local explanation)
the predictor’s behavior in general (global explanation)

@ possibly, select the most relevant features
e i.e. the ones contributing the most

@ represent the importance score accordingly
o the representation depends on the sort of data at hand
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Explanations via Feature Importance

Overview |l

Which sorts of data?

o tabular data — named features — explained via histograms

Precicted value negative
B e —
(max)

() %32

Feawre Value

(a) Husky d as wolf (b) Explanation

@ text — bag of words / TD-IDF / Word2Vec — explained via words

P
|5

Model Data and Prediction Explanation
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Explanations via Feature Importance

Overview |1

General Remarks about Feature Importance

@ may be used to explain either the model or the outcome

@ in both cases, explanations are provided by model inspection
— data-specific representations play a crucial role

o feature selection is a by-product of the explanation process

o feature importance computation is commonly

model agnostic (i.e., it works with any sort of ML predictor)
post-hoc (i.e., it occurs after predictors’ training)
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Explanations via Feature Importance Feature Importance via LIME

Focus on. ..

o Feature Importance via LIME
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Explanations via Feature Importance Feature Importance via LIME

Overview |

@ LIME = Local Interpretable Model-agnostic Explanations

@ model-agnostic and post-hoc means for outcome explanation

e works by constructing a local surrogate model around the prediction to
be explained
o the predictor to be explained acts as an oracle

@ may also be exploited as a means for model explanation
e by averaging multiple outcome explanations
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Explanations via Feature Importance Feature Importance via LIME

Overview |l

Magnini, Ciatto, Omicini (UniBo)

To explain a prediction y = f(X) s.t.
X=(X1,.--sXjy.--,Xn), LIME:

@ trains an interpretable model g

e approximating f in the surroundings
of x

@ uses g to compute how much each x;
contributes to y

Interpretable models could be:
@ linear models
@ decision trees

Gentle Introduction to XAl BPER, 2023/05/05 62 /191



Explanations via Feature Importance Feature Importance via LIME

Algorithm Overview |

Assumptions and prerequisites

@ Input features may be of any sort (numeric, categorical, pixel, etc.)

@ Binary interpretable components must be defined for each feature
categorical feature <> one-hot encoding
numeric feature <+ bin discretization
BOW feature <> word presence/absence
pixel feature <> super-pixel presence/absence

e the mapping among features and components must be reversible

@ A measure of proximity / similarity to x
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ielnps ekl e
Algorithm Overview ||

About notation

@ x e R"=(xy,...,x,) is the input vector containing the original features
o X' €{0,1}™ = (xq,...,x.,) is the corresponding vector of interpretable
components

@ f:R" — Y is the predictor to be explained ’
@ g:{0,1}™ — Y is the interpretable predictor constructed by LIME

@ 7z(Z) : R" — [0, 1] is the proximity measure of some input point Z w.r.t. s
some pivot point X :
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el e
Algorithm Overview IlI

Algorithm overview

© Sample N points z1, ..., Zzy around X according to 7z

@ For each z;
@ compute the corresponding interpretable components Z/ ...
® ...and prediction y; = f(Z;)

© Use the data items (Z;, y;) to train g
e g is trained to perform regularization

@ Repeat the process with different hyper-parameters of g

© Select the g which
e maximises the fidelity of g w.r.t. f
o while minimizing the complexity of g

@ Use the coefficients of g as measures of feature importance
o select the K-best coefficients
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ielnps ekl e
Algorithm Overview [V

Hyper-parameters of LIME

e N: amount of samples generated to explain a single prediction x

@ K: maximum amount of important features to be selected

@ g: sort of the interpretable model to be trained (e.g., linear, tree)
o this commonly implies the sort of regularization to be used

@ reversible mapping between features and interpretable components
o essentially, a binarization process
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ielnps ekl e
From local to global LIME

@ Select M pivot points X from the input

f1 f f3 f4 f5 Space
-
@ For each x; = (X,'71, ey Xy e ,X,'7,,/) e X
compute K-best feature importance

o ... where cell w;; is the importance of
the j-th component of X;

@) @) @) @

Y
1
1
1
1
: e produce a M x n’ matrix W ...
|
T
|
1

© Aggregate W column-wise to get global
feature importances

Major issues

@ How to select the N pivot points?

@ It only works if all instances have the same features
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T (e =R (=
About LIME's outputs |

Representation of results is quintessential with feature importance:

@ in tabular data, we may represent the contribution of feature intervals:

Predicted value negative positive Feature Value
RM > 6.63
1230 T ] 4621 | —

(min) 34.32 (max) LSTAT <=7.20
6.21

[TAX <= 280.50
0.5 INDUS

PTRATIO

5.16 < INDUS <= 9.69]
0321

17.40 < PTRATIO <= ..,

030 ]
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el e
About LIME's outputs Il

@ in images, we may highlight the contribution of patches:

(a) Husky classified as wolf (b) Explanation

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAl BPER, 2023/05/05 69 /191



Explanations via Feature Importance Feature Importance via LIME

About LIME's outputs Il

@ in text, we may highlight the contribution of individual tokens

/ sneeze | FU Explainer
4 weight (LIME)
\ headache
no fatigue
age (?J

Data and Prediction

sneeze

headache

Model Explanation
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Explanations via Feature Importance Discussion about Feature Importance in LIME

Focus on. ..

o Discussion about Feature Importance in LIME
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Explanations via Feature Importance Discussion about Feature Importance in LIME

Discussion

clear and intuitive interpretation of predictions
applicable to any sort of supervised predictor

adaptable to many sorts of data

e 6 o ¢

computational effort is parametric

@ more a tool for debugging than a means for explanation

@ requires a lot of pre-processing

@ may not fit all sorts of features

A
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Explanations via Symbolic Knowledge Extraction

Next in Line. ..

@ Explanations via Symbolic Knowledge Extraction
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Explanations via Symbolic Knowledge Extraction

Overview |

SKE
-
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@ search of a surrogate interpretable model. . .

@ ...consisting of symbolic knowledge




Explanations via Symbolic Knowledge Extraction

Overview |l

Definition

Any algorithmic procedure accepting trained sub-symbolic predictors as
input and producing symbolic knowledge as output, in such a way that the
extracted knowledge reflects the behaviour of the predictor with high
fidelity.
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Explanations via Symbolic Knowledge Extraction

Overview |1

Example:

Class = setosa < PetalWidth < 1.0.

Class = versicolor < PetallLength > 4.9
A SepalWidth € [2.9, 3.2].
Class = versicolor < PetalWidth > 1.6.

Class = virginica <+ SepalWidth < 2.9.

Class = virginica <
SepallLength € [5.4, 6.3].
Error: 0.346668 Steps: 26926 Class = virginica <

PetalWidth € [1.0, 1.6].
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Explanations via Symbolic Knowledge Extraction

What does ‘symbolic’ actually mean? |

Symbolic representations of knowledge
@ involves a set of symbols,
@ which can be combined (e.g., concatenated) in (possibly) infinitely
many ways,
o following precise syntactical rules, and

@ where both elementary symbols and any admissible combination of
them can be assigned with meaning
ie each symbol can be mapped into some entity from the domain at hand.

Notable example }

e formal logic
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Explanations via Symbolic Knowledge Extraction

What does ‘symbolic’ actually mean? |

Opposite notion: distributed representations

@ where symbols alone have no meaning
@ unless it is considered along with its neighbourhood
ie any other symbol which is close (according to some notion of closeness)
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Plenty of SKE methods from the literature |

Table: Summary of the knowledge-extraction algorithms. Symbol * means that the related
dimension of the algorithm is not bounded. Symbol { means that the output is a power law.

#  Method Translucency Task Input Expressiveness Shape

1 [Breiman et al., 1984] P C+R C+D P DT
27 "[Quinfan, 1986] T~ " " " " TP T T T 7 c~ "o~ P~ T DT~ ~
" 37 T[Saito and Nakano, 1988] ~ ~ = P~~~ ~ [ ) I P L~
" 4" "[Clark and Niblett, 1989] ~ ~ " P~~~ 7 C~ &4 "7 P C—-

5  [Masuoka et al., 1990] D (NN) C C F L
"%~ T[Hayashi, i090] ~ T~ BN\~ CT "B T Foo £
" 77 T[Towell and Shaviik, 1991]° "D(NN) ~ ~ "C~ "D ~ " T T MN~ ~ T N
"8 "[Berenji, 1991] ~ ~ T T © D(NNy - "C~ "~ C ™77 F~ "~ N
" 97 T[Brunk and Pazzani, 1991] © ~ P~~~ ° C~"C+D T T 7 Y — 4 [z
" 10 "[Murphy and Pazzani, 1991] ~ P~~~ ~ ~ C” 7D T T TMNT T T T DT~
" 11 T[Horikawaetal,1992] ~~ "D(NN) -~ "C " C "7 F~ =/ (TS
T 127 T[Tresp etal, 1092] T © D(NNy) "~ "R~ "C 777 PN 2 A
" 13 “[Towell and Shaviik, 1993 "D(NN) ~ ~ "C ™~ D ~ ~ " " ° Pl 1T
" 14 T[Thrun,1993] ~ ~ ~ 7 T T © D(NNy ~ " "C ™~ 7C 7T PFMN ~ " " TLC
"15 "[Cohen,1993] T T~ " " T TP T T 77 C~"C+D T T 7 PO\ Z\ Y
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Explanations via Symbolic Knowledge Extraction

Plenty of SKE methods from the literature Il

16 [Quinian, 1993] P C C+D P DT
TI7 [Fu 1994 T T T T T T T DINNy - "C "D T T P L~
" 18° [Halgamuge and Glesner, 904D (NN) ~ ~ "C ~ ~ "C ~ ~ ~ 7 © F- - L™~
" 19 [Mitra, 1994 T T T T T T 7 D(NNy) ~~ C~ "C¢D —~~ F- - L™~
" 20 "[Craven and Shavlik, 1994] =~ P~~~ T~ C™ BT P+MN =~ " TLC
" 21" "[Fiirnkranz and Widmer, 1994] P~~~ "~ [ P C—-
22" "[Sestito and Dillon, 1994] ~ ~ " P~ " " " c ¢ 7 P C—

23 [Andrews and Geva, 1995] D (NN) C C+D P L
" 24~ “[Matthews and Jagielska, 1995p (NN) ~ ~ "C ~~ B~ T T " © F-- - C™—~
" 25 T[Cohen,1995] T~ " " """ P~ "7 (N P L\
"26 [Popetal,1994] T~ """ " P """ c- "B "~ P L™~
" 27 [Setionoand Liu,1996]  ~ "D{(NN) ~ " "C " B T T T~ P N
" 28 T[Tickleetal,1996] ~ ~~~ " P~~~ c- BT 77 Y —\~ / L] s
" 29 "[Yuan and Zhuang,1996] _ ~ ~ P~ "~ c "o~~~ F- b
"~ 30 [Craven and Shavlik, 1996] ~ ~ P~~~ "~ C- BT P+MN ~— ~ 7 DT~
" 31 [Hongandlee, 1996] ~  ~ P~~~ c_ ¢ "7 FIana 2zl s
" 32" [Setiono and Liu, 1997 " 'D(NN3) ~ ~ " C ~ " C+D_ T T T o] = T~} C— -
" 337 [Setiono, 1997] ~ ~ T T ° DNNy ~~"C~ "D~ """ PlEal\~l iljas
" 34 "[Nauckand Kruse, 1997] ~ "D{(NN) ~ " "C "~ D T~ "~ A Ty
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Plenty of SKE methods from the literature Il

35 [Saito and Nakano, 1997] D (NN) R C t i
"36 [Benitezetal,1997] ° ~ "D{(NN) T T C+R = C =TT 7 F~ L™~
" 37 Tlishibuchietal, 1997] ~ " " " P T " 7 c- ¢ 77 F- C~ -
" 38 [Tahaand Ghosh, 1999] " "D(NN) ~ ~ "C~~ C T~ "~ P C~ -
"39 T[Tahaand Ghosh,1999] " "D(NN) =~ "C " C =~~~ 7 P C~ -
" 40 “[Krishnanetal,1999b)" " "D(NN) =~ "C "B =~ 7 P L~
" 41 [Nauck and Kruse, 1999] ~ "D(NN) ~~ "R~ ~ D~~~ 7 F~ L~
" 42" "[Taha and Ghosh, 1999] ~ =~ " P~~~ c "B 7 P C~ -
" 43" "[Krishnanetal, 19992 " TP~ T T T 7 c- ¢~ P DT~
" 44 "|Schmitzetal, 1999~~~ TP~ T C+R "C+D T~ ~ P DT~
" 45 T[Hongand Chen,1999] " =~ TP T T T 7 c~- ¢ 77 F~ L™~

46 [Setiono, 2000] D (NN) C B MN L
T 47 [Tsukimoto, 2000] ~ ~ ~ ~ © D(NN) ~ " "C~"C+D ~ ~ 7 P A5N7 [
"48 [Kimand Lee, 2000~~~ D(NN4) =~ "C~ "C+D T T © P~ T DT~
" 49 "[Setiono and Leow, 2000 T D (NN) ~ = "R~ " C4+D = P+MN{4O =~ T DT
"B50 [Zhouetal, 20000 """ P " 7 C~ "C+D T 77 P~ A7
"51 [Hongand Chen,2000)  ~ ~ " P~~~ c ¢ 777 = 8 i
" 52" “[Sato and Tsukimoto, 2001] B (NN3) ~~ "R~ "&b T T T~ = el bt
" 53" "[Parpinellietal, 2001] ~ =~ " P~ T~ C~C+D T T 7 PE=n\ 2\ Y
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Plenty of SKE methods from the literature IV

54  [Castillo et al., 2001] P C+R C+D F L
" 55 "[Saito and Nakano, 2002] ~ "D (NN) ~ = "R~ ~C+D =~~~ P L~
"56 [Setionoetal,2002)  © ~ D(NN3) ~ R ~C+D =~ P L~
"57 T[liuetal, 2002 " " " " P 7 T P L~
58 [Boz2002] T " TP T 7 N P~ DT~
" 59 " [Markowska-Kaczmar and Trelak,R003] "~ "C ~ " C+D ~ ~  © F- C~ -
"60 [Zhouetal,2003] """ P "7 C~ "C+D T T 7 P C~ -
" 61 [Setiono and Thong, 2004] D (NN3) =~ "R~ ~C+D ~ =~ P L~
T 62 [Fuetal,2004] ~ T T D(SVM) "~ " C~ "C+Db ~ " "~ P C™ -
" 63 [Markowska-Kaczmar and Chumiepa, 2004] " C ~ ~C+D ~ =~ ~ P B
" 64 [RabuRaletal., 2004~~~ " P~ C”~ G+ T T T 7 P L™~
"65 [Chen, 2004 ~ TP T 7 c~ ¢ 77 P 2N
"66 [Liuetal, 2004 " " P T 7 T P ASN U&=
" 67 [Browneetal, 2004~~~ TP 7 C 4D~ T P+MN " T T DT

68 [Zhang et al., 2005] D (SVM) C C P L
" 69 [Barakat and Diederich, 2008]D (SVM) = ~ C+R ~ ¥ ~ T " © o =l WA
" 70" “[Fung et al, 2008] ~ ~ ~ D (SVMFLC) " €T ¢ T 2~ = i
" 71 [Chavesetal,2005]  ~~ D((SVM) ~ C " C " 7 Flaaa\~l /322
" 727 "[Torres and Rocco, 2005] ~ ~ ~ P~~~ T C~ 4D T T PF+MN T T T DT
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Explanations via Symbolic Knowledge Extraction

Plenty of SKE methods from the literature V

73 [Etchells and G., 2006] P C C+D P L
" 74 T[Heetal,2006] " P T 7 C”~"C¥D T T T P~ T DT~
" 75 T[Huysmans et al., 2006] P~~~ R~ ¢~~~ 77 P L -
" 76 "[Bader et al., 2007] ~ ~ DINNy ~~ " C~ "B~ 777 P L~
" 77 T[Schetininet al,2007] T~ D(DTE) R~ C 7 P~ T DT~
" 78 "[Chenetal,2007] =~ DGSVM)  ~"C~~"C """ P L~
" 79 " [Barakat and Bradley, 2007] D (SVM) ~ = " C ~ "C4D ~ "~ ~ P L~
" 80 [Saad and Wunsch 11,2007~ ~ P~~~ T~ C~ "C¥D T T T T o~ "7 L~
" 81 "[Martensetal, 2007] " P~~~ C~ " CsD T T T T P C— -
" 82 T[Nufiez et al, 2008] ~ T D(SVM) "~ "C~~ "¢~~~ P+O ~ T T L\
" 83 T[Setionoetal,2008] " P~~~ C~"C4D T T TPFO T T T T N
" 84 "[Odajimaetal,2008] ~ ~ " P~~~ [ » P [N
"85 [Konigetal,2008] TP T C +R “C+D T T T T F DT~
" 86 [Bader, 2009] T © DINNy ~~"C~ "B~ 777 P [P
" 87 [Martensetal, 2000~ D(SVM) T C T ¥ T T T 77 ¥ S * A

88  [Lehmann et al., 2010] P C B P L
" 89 _[Kuéagta_a_nd_I(_a%iFv:ﬂa\_/aT(u?ngr,_Bﬁli] T TC T TCfD T T T T P L~
" 90 [Sethietal,2012] "~ " P "~ C~"C¥D T T T T Pl = TA™

91 [Zilke et al., 2016] D (NN) R C+D P DT

Gentle Introduction to XAl BPER, 2023/05/05 83 /191



Plenty of SKE methods from the literature VI

92 [Chan and Chan, 2017] D (NN) R C P L
" 93" "[Yedjour and Benyettou, 2018] P~~~ c BT 7 P C~ -
" 94 "[Chanand Chan, 2020~ "D(NN) ~~ "R~ ~C ~~ 7 P L™~
95 [Wang et al., 2020] D (DTE) C C P L
" 96 [Sabbatinietal,2021] " " " P T T T R~ ¢~~~ 77 P C~~
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Taxonomy of SKE methods |

[ Pedagogical ] [Decompositional] [Classifi:ation] [ Regression ] Expressiveness

Discrete

Continous

Rule List

Decision Tree
Decision Table

—‘ Propositional
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Taxonomy of SKE methods Il

target Al task for the predictor undergoing extraction
classification ie., f : X CR" — Y sit. |V =k
regression i.e.,, f : X CR" —» Y CR"™

translucency what kind of ML predictor does the SKE method support?

pedagogical: any supervised predictor

decompositional: a particular sort of ML predictor (e.g. NN,
SVM, DT)

input data supported by the predictor undergoing extraction
binary: X = {0,1}"
discrete: X € {x1,...,x,}"
continuous: X C R”
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Taxonomy of SKE methods Ill

shape of the extracted knowledge

rule list: i.e. ordered sequences of if-then-else rules
decision tree: hierarchical set of if-then-else rules involving a
comparison among a variable and a constant
decision table: 2D tables summarising decisions for each
possible assignment of variables
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Taxonomy of SKE methods IV

expressiveness of the extracted knowledge
propositional: boolean statements + logic connectives
@ there including arithmetic comparisons
among variables and constants
fuzzy: hierarchical set of if-then-else rules involving a
comparison among a variable and a constant
oblique: boolean statements + logic connectives +
arithmetic comparisons
M-of-N: any of the above + statements like

m—of —{¢1,...,0n}
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Examples of methods and their classification — CART |

CART :[Breiman et 2l 19841 c|agsification and regression trees

o translucency: pedagogical
target Al task: classification OR regression
input data: binary OR discrete OR continuous

shape: decision tree

expressiveness: propositional
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Explanations via Symbolic Knowledge Extraction

Examples of methods and their classification — CART I

* absent » present

start >= 8.5?

start >= 147 |
age < 4.67

age >=9.2?

® oo 6o @

36% 15% 17% 9% 23%

Figure: An example decision tree estimating the probability of kyphosis after spinal surgery, given
the age of the patient and the vertebra at which surgery was started .
Notice that all decision trees subtend a partition of the input space, and that those trees
themselves provide intelligible representations of how predictions are attained.
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Examples of methods and their classification — CART Il

Using CART for SKE
© generate a ‘fake’ dataset by feeding the predictor undergoing SKE

@ train a decision tree on the ‘fake’ dataset

© compute fidelity and repeat step 2 until satisfied

Q [opt.] rewrite the tree as a list of rules
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Explanations via Symbolic Knowledge Extraction

Examples of methods and their classification — GridEx |

GridEx:[sabbatiniet ol 2021 orid extractor

o translucency: pedagogical

target Al task: regression
input data: continuous

shape: rule list

expressiveness: propositional
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Explanations via Symbolic Knowledge Extraction

Examples of methods and their classification — GridEx |1

Figure: Example of GridEx's hyper-cube partitioning (merging step not reported)

: : B
) lteration (c) Iteration (d) lteration
(pr=2) 2 (p2=3). 3 (ps=2).

(a) (b
Surrounding 1
cube
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Explanations via Symbolic Knowledge Extraction

Examples of methods and their classification — GridEx |

Using GridEx for SKE
© partition the input space into pj hypercubes

e evenly splitting the n dimensions into p; bins
@ partition each non empty-region into pj hypercubes
e evenly splitting the n dimensions into p, bins
© repeat the splitting arbitrarily
@ assign a prediction with each non-empty partition (e.g. average value)
@ write an if-then rule for each non-empty partition:

e if: expressions delimiting the partition
e then: prediction of that partition

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAl BPER, 2023/05/05 94 /191



Examples of methods and their classification — REFANN |

REFANN:[5etiene et 2l 20021 pyjle extraction from function approximating

e translucency: decompositional (3-layered NN)

target Al task: regression

shape: rule list

°
@ input data: continuous OR discrete
°
°

expressiveness: propositional

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAl BPER, 2023/05/05 95 /191



Explanations via Symbolic Knowledge Extraction

Examples of methods and their classification — REFANN |l

Hidden Layer

Input Layer
— \
Vi \
Input 1 / .
Input 3 Q/
\O/

Output Layer

Figure: An example 3-layered multi-layer perceptron (MLP)

Gentle Introduction to XAl

Magnini, Ciatto, Omicini (UniBo)

BPER, 2023/05/05
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Examples of methods and their classification — REFANN [lI

Using REFANN for SKE

@ prune the network's hidden units and input neurons

@ approximate the hidden units’ activation function with a 2-steps-wise
linear function

© approximate the output units' activation function with a 3- or
5-step-wise linear function

@ rewrite each output neuron as a linear combination of the input neuron

© rewrite the linear combinations as rules

o hence attaining a list of rules
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Examples of methods and their classification — REFANN [V

y

h(xm) ......................... ——,.
Xol-oeeeeeens -

/.

[
/
’
’
’
/
4
' x
0] X0 Xm
Figure: The tanh(x) function (solid curve) for x € [0, xm] is approximated by

a 2-piece linear function (dashed lines)
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Examples of methods and their classification — REFANN V

y

B | ooeoreeeeeenoneo
Yo a2 :
JC
Xot-/ :
I .
: : : x

Oxy, x4 X, Xnm

Figure: [Setiono et al., 2002] The tanh(x) function (solid curve) for x € [0, xm] is approximated
by a 3-piece linear function (dashed lines)
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Explanations via Symbolic Knowledge Extraction Discussion

Focus on. ..

@ Discussion
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Explanations via Symbolic Knowledge Extraction Discussion
Notable Remarks

@ commitment to a particular output shape / expressiveness

e to preserve both human- and machine-interpretability
e other syntaxes may exist

discretization of the input space
discretization of the output space
features should have semantics per se

further refinements may be applied to rules

rules constitute global explanations
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Explanations via Symbolic Knowledge Extraction Discussion

Current Limitations

@ tabular data as input — doesn't really work with images
@ high dimensional datasets — very large, poorly readable rules

@ highly variable input spaces — many rules — poor readability
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Explanations via Symbolic Knowledge Extraction Discussion

Future research activities

@ target images or highly dimensional data in general
o target reinforcement learning (when based on NN)
@ target unsupervised learning

@ design and prototype your own extraction algorithm
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Transparent Box Design via Symbolic Knowledge Injection

Next in Line. ..

© Transparent Box Design via Symbolic Knowledge Injection
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Why SKI?

There are several benefits:

e 6 o6 o

prevent the predictor to become a black-box!;
reduce learning time;

reduce the data size needed for training;
improve predictor’s accuracy;

build a predictor that behave as a logic engine.
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Transparent Box Design via Symbolic Knowledge Injection

Symbolic Knowledge Injection |

Key insights:
@ Altering ML predictors. ..
@ ...to make they comply to user-provided knowledge. ..

@ ...which is represented in symbolic form
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Transparent Box Design via Symbolic Knowledge Injection

Symbolic Knowledge Injection Il

We define SKI as:

any algorithmic procedure affecting how sub-symbolic predictors draw their
inferences in such a way that predictions are either computed as a function
of, or made consistent with, some given symbolic knowledge*.

* a wide definition that includes the vast majority of the works in the main
surveys
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Transparent Box Design via Symbolic Knowledge Injection

Symbolic Knowledge Injection IlI

General workflow:

(Symbolic) (Sub-symbolic)
Knowledge Predictor
1 3
Parsing Injection
(Visitable) Predictor with
Knowledge exploitable knowledge
2 4
Fuzzification Training
(Sub-symbolic) I (Trained)
Knowledge Predictor

BPER, 2023/05/05 108 /191
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Symbolic Knowledge |

Taxonomy of SKI methods |

Input Knowledge

[ Strategy ] [Targe( Pred\cmr]

Kernel Machines

(oernowetoe | - (o rormue | (* reactor | [somietoe | [“utea | | Ciarciuns ] [ symoonc | [ seain
Structuring Embedding Learning Knowledge Support
Manipulation (Enrich)

Neural Networks
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Taxonomy of SKI methods Il

@ input knowledge how is the knowledge to-be-injected represented?
e commonly, some sub-set of first-order logic (FOL)

@ target predictor which predictors can knowledge be injected into?
e mostly, neural networks

@ strategy how does injection actually work?

o guided learning the input knowledge is used to guide the training
process

e structuring the internal composition of the predictor is (re-)structured
to reflect the input knowledge

e embedding the input knowledge is converted into numeric array form

@ purpose why is knowledge injected in the first place?

o knowledge manipulation improve / extend / reason about symbol
knowledge—subsymbolically

o learning support improve the sub-symbolic predictor (e.g. speed, size,
etc.)
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

Focus on. ..

@ Focus on input knowledge
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge
About Logic |

How to represent knowledge?

First-Order Logic

@ expressiveness—tractability
trade-off
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Transparent Box Design via Symbolic Knowledge Injection [EIEISTERWTToIT MW ¥ 20
About Logic Il

In practice, virtually all SKI algorithms deal with:
o datalog;
@ description logics (a.k.a. knowledge graph, KG);
@ propositional logic (PL).
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge
First Order Logic |

@ FOL is extremely flexible and expressive
e variables, quantifiers, structured terms, negation, logic connectives

@ one can use recursion to define recursive structures;
e possibly, intensionally—i.e. without extensively describing everything

@ maybe too “powerful” for canonical NN

o most NN are essentially DAG
e training via backpropagation requires no cycles
— recursion not supported
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge
First Order Logic

Example of FOL knowledge base (Peano numbers)

natural(zero)
VX : natural(X) — natural(successor0f (X))
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

Horn Clauses (= Prolog) |

@ sub-set of FOL with:
e implicit quantifiers
o limited set of logic connectives

@ still supports recursion

@ nice expressiveness—tractability trade-off
e often exploited to design/realise automatic reasoning
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

Horn Clauses (= Prolog) I

Example of Horn clauses (Peano numbers)

natural(zero)
natural(successor0f (X)) « natural(X)
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge
Datalog |

@ sub-set of Horn clauses with no recursion

e good for SKI!

Peano numbers in Datalog

@ cannot be represented!

o (as they require recursion)
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skl plbneiles
Description Logics (=~ Knowledge Graphs) |

@ Very restricted subset of FOL
e only constants, variables and n-ary predicates with n < 2;

@ Everything is represented via collections of triplets of the form:
(a f b) or f(a,b)

where a, b are entities, and f is a (binary) relationship

@ essentially, directed graph:

o nodes (i.e. entities) represent individuals
o edges (i.e. relationships) represent relations among individuals
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

Description Logics (=~ Knowledge Graphs) Il

(AlfredHitchcock, DirectorOf, Psycho)

| T

Sir Alfred Joseph Hitchcock Psycho is a psychological horrol
(13 August 1899 - 29 April 1980) film directed and produced by
was an English film director and Alfred Hitchcock, and written by
producer, ... Joseph Stefano, ...
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

Propositional Logic |

@ The simplest subset of FOL
e no quantifiers, no terms, no n-ary predicates with n > 0
o essentially, just Boolean algebra

@ low expressiveness, but easy to work with
v
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Transparent Box Design via Symbolic Knowledge Injection Focus on input knowledge

Propositional Logic Il

Example

big petal N\ average sepal — virginica.
big petal N\ —average sepal — versicolor.
small _petal — setosa.
average sepal = (3 < SepalWidth < 5)
big _petal = (PetalLength > 3)
small _petal = —big petal = (PetalLength < 3)
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Transparent Box Design via Symbolic Knowledge Injection Focus on strategy

Focus on. ..

o Focus on strategy
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FEDE I
Strategy 1: Guided Learning |

3

2+

Iijou shart 7 e .

1(6,84) 4. ient descent

@ learning is essentially an optimizionation process
@ ...often performed via gradient descent
ie minimising a loss function
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FEDE I
Strategy 1: Guided Learning Il

SKI via Guided Learning

@ Input knowledge is converted into a cost factor
ie the more the knowledge is violated, the higher the cost
@ The loss function is altered to include that cost factor
e.g. as a simple additive regularisation factor

© The predictor is then trained as usual

— Training minimises both the predictors’ error and inconsistency w.r.t.
knowledge
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FEDE I
Strategy 1: Guided Learning Il

\ likes (john, jane). H l

: likes(jane, john). HN

\likes(jack, jane). N L
X, H
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FEDE I
Strategy 2: Structuring |

SKI via Structuring

@ The predictor's inner architecture is shaped to"mimic” the knowledge
@ Shaping is predictor-dependent
e.g. for neural networks, this means creating ad-hoc layers

o where small groups of neurons are used to compute pieces of a formula

— The predictor directly exploits the knowledge during inference
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Transparent Box Design via Symb: Knowledge Injection Focus on strategy

Strategy 2: Structuring |l

1 likes (john, jane). H

*likes(jane, john). [

1 likes(jack, jane). H >
H
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FEDE I
Strategy 2: Structuring Il

Example:

A+ BANCA-D.
A+~ ENF. <~
B + true.
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FEDE I
Strategy 3: Embedding |

SKI via Structuring

@ Input knowledge is converted into numeric tensor(s)

@ These are used as the training set for an ordinary learning process

— The predictor is trained and used ‘as usual’

Tlies Gohn, jane).
!likes(jane, john).
\likes(jack, jane)
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Transparent Box Design via Symbolic Knowledge Injection Focus on strategy

Strategy 3: Embedding Il

Example: knowledge graph embedding

@ entities and relations are embedded into continuos vector spaces;

e scoring function f,(h, t) defined on each fact (h, r, t) to measure its

plausibility;

Entity and Relation Space

(a) TransE. (b) TransH.

Entity and Relation Space

Magnini, Ciatto, Omicini (UniBo)

Gentle Introduction to XAl

Relation Space of r

() TransR.
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FEDE I
Strategy 3: Embedding Il

fr(ht)
Tr
h t
(a) RESCAL (b) DistMult.
Y TeleToTe
ML MZb, MLMZb, M1 M2M?
| oLy
@000 0000 0000 @000 Q000
h r t h r t h r
(a) SME. (b) NTN. (c) MLP. (d) NAM.
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Transparent Box Design via Symbolic Knowledge Injection Example algorithms

Focus on. ..

o Example algorithms
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Transparent Box Design via Symbolic Knowledge Injection Example algorithms

Knowledge Injection via Network Structuring

purpose — learning support

target predictor — neural networks
strategy — structuring
input logic — stratified Datalog with negation
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Transparent Box Design via Symbolic Knowledge Injection Example algorithms

Knowledge Injection via Network Structuring [
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Transparent Box Design via Symbolic Knowledge Injection Example algorithms

Knowledge Injection via Network Structuring [

Formula \ C. interpretation H Formula \ C. interpretation
[~¢] (1 —[¢]) lo < 9] n(1+ [¥] - [¢])
[ond] | n(min([¢], [+])) [class(X,yi) < ¢] [4]*
[ov ] | n(max([4], [¥])) [expr(X)] expr([X])
[¢ =] n([~(¢ # ¥)]) [true] 1
[¢ # 4] n(l[e] — [¥1]) [false] 0
[o>v] | n(z+Is] = [¥D) | [X] X
[¢=>4] | n(1+[o] —[¥]) [k] k
[o <ol | 05+ ] - [e]) [p(X)]* [t1 V...V

* encodes the value for the it output

** assuming p is defined by k clauses of the form:

p(X) 1, ..., p(X) +
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Transparent Box Design via Symbolic Knowledge Injection Example algorithms

Knowledge Injection via Network Structuring \Y,

HOR RONTET [
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Transparent Box Design via Symbolic Knowledge Injection Example algorithms

Knowledge Injection via Lambda Layer

purpose — learning support

target predictor — neural networks
strategy — guided learning
input logic — stratified Datalog with negation
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Transparent Box Design via Symbolic Knowledge Injection Example algorithms

Knowledge Injection via Lambda Layer I

NN during |nference
. l“_" I'__ .

|

1

|___J I___

NN during training

i r
: 1 :_)i .
- - Y + penalty
|
|
|
|
|
v
GRS
i
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Transparent Box Design via Symbolic Knowledge Injection Example algorithms

Knowledge Injection via Lambda Layer [

Formula \ C. interpretation H Formula \ C. interpretation
[-¢] n(t—[¢]) | o <] n(le] — [¥])
[ony] | n(max([¢], [¥])) | [class(X,yi) < ] []*
[¢ V4] n(min([¢], [¢])) || [expr(X)] expr([X])
[¢ =] n(lle] — [¥11) | [true] 0
[¢ # ¢] [(¢ =)] | [false] 1
[¢> 4] | n(0.5 =[] +[¥]) | [X] x
l¢ > ] n([¥] - [¢]) || [x] _ k
[ <] | n(0.5+[g] — [¥]) || [p(X)]™ [1 V... V]

* encodes the penalty for the it neuron

** assuming predicate p is defined by k clauses of the form:
p(X) 91, ...y p(X) + Py
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Transparent Box Design via Symbolic Knowledge Injection Discussion

Focus on. ..

@ Discussion

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAl BPER, 2023/05/05 141 /191



Transparent Box Design via Symbolic Knowledge Injection Discussion
Notable Remarks

@ knowledge bases should express relations about input—output pairs
@ embedding implies extensional representation of knowledge
e guided learning, and structuring support intensional knowledge

@ propositional knowledge implies binarising the 1/0O spaces
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Transparent Box Design via Symbolic Knowledge Injection Discussion

Current Limitations

support for regression is preliminary
recursive data structures are not supported

recursive clauses are not supported

extensional representation cost storage
e not always possible

@ guided learning works poorly with lacking data

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAl BPER, 2023/05/05 143 /191



Transparent Box Design via Symbolic Knowledge Injection Discussion

Future research activities

o foundational: address recursion
@ practical: address regression
@ is SKI possible outside the NN domain?
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XAl in Practice

Next in Line. ..

© XAl in Practice
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XAl in Practice Python Tools for Feature Importance

Focus on. ..

@ Python Tools for Feature Importance
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Python Tools for Feature Importance
Python Library for LIME |

Key components

LimeTabularExplainer — explainer for predictions on tabular data

@ it can be used for both classification and regression tasks

LimelmageExplainer — explainer for predictions on image data
@ image classification tasks

LimeTextExplainer — explainer for predictions on text data
@ text classification tasks
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Python Tools for Feature Importance
Python Library for LIME |

Unified API for Explainers

@ the explanation for one data sample can be obtained by the
explain_instance method, it has several parameters

e.g. predict_fn, num_sample, num_features
@ explain_instance gives an Explanation (or an

ImageExplanation) object. It contains information about the domain

(e.g., features, class, bins) and, of course, about the explanation of
the data sample

e.g. as_list, as_html to get the explanation as a textual list or an image
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XAl in Practice Python Tools for Feature Importance

Tutorial

Two ways to reproduce the tutorial:

GitHub Repository (long way)

https://github.com/pikalab-unibo/demo-1lime

DockerHub Images (quick way)

https://hub.docker.com/r/pikalab/demo-1lime/tags
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https://github.com/pikalab-unibo/demo-lime
https://hub.docker.com/r/pikalab/demo-lime/tags

LONRTN M From GitHub

Focus on. ..

@ From GitHub
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) GRS
How to set the tutorial up from GitHub |

Enviromental pre-requisites

@ Python 3.9.x%
o Git

© git clone https://github.com/pikalab-unibo/demo-1lime
@ cd demo-lime
© pip install -r requirements.txt

©Q jupyter notebook
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) GRS
How to set the tutorial up from GitHub Il

@ Your browser should automatically open showing the following page:

Syupyter |, gou

© open the demo-1ime.ipynb notebook
@ listen to the speaker presenting the tutorial =)
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VONRTNES M From DockerHub

Focus on. ..

@ From DockerHub

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAl BPER, 2023/05/05 153 /191



VONRTNES M From DockerHub

How to set the tutorial up via Docker |

Enviromental pre-requisites
@ Docker

o

pikalab/demo-lime:latest on most co
DOCKER_IMAGE=

pikalab/demo-lime:latest-apple-m1 on Apple M
@ docker pull $DOCKER_IMAGE

e in case of lacking Internet access:
docker image load -i /path/to/local/image/file.tar
© docker run -it -rm -name demo-lime -p 8888:8888
$DOCKER_IMAGE

@ Some textual output such as the following one should appear:
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VONRTNES M From DockerHub

How to set the tutorial up via Docker Il

1 [T 09:51:46.940 NotebookApp] Writing notebook server cookie secret to /root/.local/
share/jupyter/runtime/notebook_cookie_secret

2 [I 09:51:47.159 NotebookApp] Serving notebooks from local directory: /mnotebook

3 [I 09:51:47.159 NotebookApp] Jupyter Notebook 6.5.2 is running at:

4 [I 09:51:47.159 NotebookAppl] http://cb0a3641caf0:8888/7?token=2
b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd

5 [I 09:51:47.159 NotebookApp] or http://127.0.0.1:8888/7?token=2
b02d31671c6ad9e9cfB8e036eb6962d3592af9cfdd5e60bd

6 [I 09:51:47.160 NotebookApp] Use Control-C to stop this server and shut down all
kernels (twice to skip confirmation).

7 [C 09:51:47.162 NotebookApp]

8

9 To access the notebook, open this file in a browser:

10 file:///root/.local/share/jupyter/runtime/nbserver -7-open.html
11 Or copy and paste one of these URLs:

12 http://cb0a3641caf0:8888/7token=2

b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
13 or http://127.0.0.1:8888/7?token=2b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e¢60bd
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VONRTNES M From DockerHub

How to set the tutorial up via Docker Il

@ Copy-paste into your browser any link of the form:
http://cb0al3641caf0:8888/7token=TOKEN

@ Your browser should now be showing the following page:

_ Jupyter

Fios

@ open the demo-1lime.ipynb notebook
Q@ listen to the speaker presenting the tutorial =)
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P\RINZI (<M A Platform for Symbolic Knowledge Injection

Focus on. ..

@ A Platform for Symbolic Knowledge Injection
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A Platform for Symbolic Knowledge Injection
Overall Design Il

Key components:

injector: any entity capable of injecting knowledge into a sub-symbolic
predictor

e it simply alters/reconfigures the predictor. . .
@ ...which should be trained after the injector operates

predictor: the partially-trained classifier/regressor where knowledge
should be injected into

@ untrained is ok too

formula: formal representation of the symbolic knowledge to be
injected

@ e.g. in Prolog or FOL syntax
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A Platform for Symbolic Knowledge Injection
Overall Design Il

Unified API for SKI
@ 1 interface for Injector, several implementations
e.g. KBANN, KINS, KILL, etc.
@ 1 interface for Formula, several implementations
e.g. Datalog, Propositional, etc.

@ 1 interface for Predictor, currently a TF model
e.g. different kinds of NN
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VONRTNNES I A Platform for Symbolic Knowledge Injection

API Design |

(© Theory

list[Formula] knowledge
dict[str, int] feature_map

dictstr, int] class_map

ski

Injector

Model pr

data structure
for a logic rule

Magnini, Ciatto, Omicini (UniBo)

inject(Theory theory): Model

© KBANN

float omega
float gamma

edictor- uneducated
Str fuzzifier

©rans

I
i
@) Fuzzifier

[int layer |

hyper-parameters of the algorithm:

Transforms symbolic rules
into a sub-symbolic data structure

Gentle Introduction to XAl
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A Platform for Symbolic Knowledge Injection
API Design Il

@ The user only needs to know:

o the particular injector to exploit (and its parameters)
o the particular parser to decode logic rules

Magnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAl BPER, 2023/05/05 162 /191



A Platform for Symbolic Knowledge Injection
API Design Il

Underlying symbolic Al library (e.g. 2P-Kt ), providing:

Rule a semantic, intelligible representation of the function mapping
Predictor'’s inputs into the corresponding outputs, for a
particular portion of the input space;

Theory an ordered collection of rules.
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P\RINZI (<M A Platform for Symbolic Knowledge Injection

Tutorial

Two ways to reproduce the tutorial:

GitHub Repository (long way)
https://github.com/psykei/demo-psyki-python

DockerHub Images (quick way)

https://hub.docker.com/r/pikalab/prima-tutorial-2022/tags
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https://github.com/psykei/demo-psyki-python
https://hub.docker.com/r/pikalab/prima-tutorial-2022/tags

LONRTN M From GitHub

Focus on. ..

e From GitHub
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) GRS
How to set the tutorial up from GitHub |

Enviromental pre-requisites
@ Python 3.9.x
e JDK > 11

o Git

© git clone https://github.com/psykei/demo-psyki-python
@ cd demo-psyki-python

© pip install -r requirements.txt

Q export PYTHONPATH="$ (pwd)"

© jupyter notebook
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) GRS
How to set the tutorial up from GitHub Il

@ Your browser should automatically open showing the following page:

Tyupyter e g

@ open the x.ipynb notebooks in the notebook folder
Q@ listen to the speaker presenting the tutorial =)
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VONRTNES M From DockerHub

Focus on. ..

@ From DockerHub
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VONRTNES M From DockerHub

How to set the tutorial up via Docker |

Enviromental pre-requisites
@ Docker

o

pikalab/demo-psyki-python:latest
(on most computers)
DOCKER_IMAGE=
pikalab/demo-psyki-python:latest-apple-mi
(on Apple M1 computers)
@ docker pull $DOCKER_IMAGE
e in case of lacking Internet access

docker image load -i /path/to/local/image/file.tar

© docker run -it -rm -name demo-psyki-python -p 8888:8888
$DOCKER_IMAGE
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VONRTNES M From DockerHub

How to set the tutorial up via Docker Il

@ Some textual output such as the following one should appear:

[1

[1

[c

09:51:46.940 NotebookApp] Writing notebook server cookie secret to /root/.local/
share/jupyter/runtime/notebook_cookie_secret

09:51:47.159 NotebookApp] Serving notebooks from local directory: /notebook

09:51:47.159 NotebookApp] Jupyter Notebook 6.5.2 is running at:

09:51:47.159 NotebookApp] http://cb0a3641caf0:8888/7token=2
b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd

09:51:47.159 NotebookApp] or http://127.0.0.1:8888/7token=2
b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd

09:51:47.160 NotebookApp] Use Control-C to stop this server and shut down all
kernels (twice to skip confirmation).

09:51:47.162 NotebookAppl

access the notebook, open this file in a browser:
file:///root/.local/share/jupyter/runtime/nbserver -7-open.html
copy and paste one of these URLs:
http://cb0a3641caf0:8888/7token=2
b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
http://127.0.0.1:8888/?token=2b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
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VONRTNES M From DockerHub

How to set the tutorial up via Docker Il

@ Copy-paste into your browser any link of the form:
http://cb0al3641caf0:8888/7token=TOKEN

@ Your browser should now be showing the following page:

_ Jupyter

Fios

@ open the *.ipynb notebooks
Q@ listen to the speaker presenting the tutorial =)
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LONRTNYESIM A Platform for Symbolic Knowledge Extraction

Focus on. ..

@ A Platform for Symbolic Knowledge Extraction
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A Platform for Symbolic Knowledge Extraction
Overall Design Il

Key components:
extractor: any entity capable of extracting symbolic knowledge out of
sub-symbolic predictors

@ possibly, in the form of logic knowledge bases
@ possibly, leveraging upon the dataset the predictor was
trained upon ...

e possibly, after a discretization step
@ ...and its schema

predictor: some trained classifier/regressor from which knowledge
should be extracted

discretiser: any component capable to turn continuous datasets into
discrete form, following some strategy

logic theory: outcome of the extraction process
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A Platform for Symbolic Knowledge Extraction
Overall Design Il

Unified API for SKE

@ 1 interface for Extractor, several implementations
e.g. CART, REAL, GridEx

@ 1 interface for Discretiser, several implementations

o 1 interface for Predictor, several implementations
(scikit-learn method convention)

e.g. NN, kNN, DT
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A Platform for Symbolic Knowledge Extraction
API Design |

Psyke\

5 predicion

@ extractor

v P
o discretization: Discretization [#1

© extract(DataFrame): Theory
¥

wraps btput of input of wraps

[Underlying ML

Discretization

© features: Collection<DiscreteFeature>

]

@ overetcreature

© name: String
© admissibleValues: Map<String, Value>

@ el

o lower: Double
© upper: Double
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A Platform for Symbolic Knowledge Extraction
API Design I

General assumptions:
e underlying ML library (e.g. Scikit-Learn ), providing:
DataFrame a container of tabular data

Predictor<R> a computational entity which can be trained (a.k.a.
fitted) against a DataFrame and used to draw
predictions of type R;

Classifier<R> a particular case of predictor where R represents a
type having a finite amount of admissible values;

Regressor<R> a particular case of predictor where R represents a
type having a potentially infinite (possibly continuous)
amount of admissible values.
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A Platform for Symbolic Knowledge Extraction
API Design Il

e underlying symbolic Al library (e.g. 2P-Kt ), providing:

Rule a semantic, intelligible representation of the function
mapping Predictor's inputs into the corresponding
outputs, for a particular portion of the input space;

Theory an ordered collection of rules.
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A Platform for Symbolic Knowledge Extraction
About the Extracted Knowledge |

Knowledge extracted from classifiers

<t35k>(X17--meY1) = P, 1(
<taSk>(Xl7"'ame2) = P, 2(

><| ><|

) oo Pna(X).
). s Pa(X).

(task) (X1, o, Xo¥m) 1= PLm(X)s -\ Pam(X).

Magpnini, Ciatto, Omicini (UniBo) Gentle Introduction to XAl BPER, 2023/05/05 179 /191



A Platform for Symbolic Knowledge Extraction
About the Extracted Knowledge Il

Knowledge extracted from regressors

<task)(X1,...,X,,, Y) i- pl,l()_(); s pn,l()_(),
Y is i(X). i
(task)(X1, ... Xn, Y) 1= pra(X), ..., pn2(X),
Y is f(X).
(task) (X1, ..., X, Y) 1= prm(X), -, prm(X),
Y is fim(X).
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A Platform for Symbolic Knowledge Extraction
About the Extracted Knowledge IlI

... where:

e task is the (n+ 1)-ary relation representing the classification or
regression task at hand,

@ each X; is a logic variable named after the it" input attribute of the
currently available data set,

o X is the n-nuple X1, ..., X,,

@ each p;; is either a n-ary predicate expressing some constraint about
one, two or more variables, or the true literal—which can be omitted,

@ y; is the output of the it" prediction rule,

@ f; is an n-ary function computing the output value for the regression
task in the particular portion of the input space handled by the jt/
rule, and

@ is/2 is the well-known Prolog predicate aimed at evaluating functions.
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A Platform for Symbolic Knowledge Extraction
About the Extracted Knowledge IV

Underlying assumptions

@ the input space is partitioned into a finite set of regions
@ each region is assigned with a particular outcome, namely:
e a class, for classification problems
e a constant, or a simpler function, for regression problems
© one rule generated describing for each region and its corresponding
outcome
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LONRTNYESIM A Platform for Symbolic Knowledge Extraction

Tutorial

Two ways to reproduce the tutorial:

GitHub Repository (long way)

https://github.com/pikalab-unibo/prima-tutorial-2022

DockerHub Images (quick way)

https://hub.docker.com/r/pikalab/prima-tutorial-2022/tags
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LONRTN M From GitHub

Focus on. ..

o From GitHub
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) GRS
How to set the tutorial up from GitHub |

Enviromental pre-requisites
@ Python 3.9.x
e IDK > 11

o Git

©Q git clone
https://github.com/pikalab-unibo/prima-tutorial-2022

@ cd prima-tutorial-2022
© pip install -r requirements.txt

@ jupyter notebook
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) GRS
How to set the tutorial up from GitHub Il

@ Your browser should automatically open showing the following page:

Syupyter |, gou

O open the psyke-tutorial.ipynb notebook
@ listen to the speaker presenting the tutorial =)
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VONRTNES M From DockerHub

Focus on. ..

o From DockerHub
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VONRTNES M From DockerHub

How to set the tutorial up via Docker |

Enviromental pre-requisites
@ Docker

o

pikalab/prima-tutorial-2022:latest
DOCKER_IMAGE=

pikalab/prima-tutorial-2022:latest-apple-ml
@ docker pull $DOCKER_IMAGE

e in case of lacking Internet access:
docker image load -i /path/to/local/image/file.tar
© docker run -it -rm -name prima-tutorial-ske-ski -p
8888:8888 $DOCKER_IMAGE

@ Some textual output such as the following one should appear:
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VONRTNES M From DockerHub

How to set the tutorial up via Docker Il

1 [T 09:51:46.940 NotebookApp] Writing notebook server cookie secret to /root/.local/
share/jupyter/runtime/notebook_cookie_secret

2 [I 09:51:47.159 NotebookApp] Serving notebooks from local directory: /mnotebook

3 [I 09:51:47.159 NotebookApp] Jupyter Notebook 6.5.2 is running at:

4 [I 09:51:47.159 NotebookAppl] http://cb0a3641caf0:8888/7?token=2
b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd

5 [I 09:51:47.159 NotebookApp] or http://127.0.0.1:8888/7?token=2
b02d31671c6ad9e9cfB8e036eb6962d3592af9cfdd5e60bd

6 [I 09:51:47.160 NotebookApp] Use Control-C to stop this server and shut down all
kernels (twice to skip confirmation).

7 [C 09:51:47.162 NotebookApp]

8

9 To access the notebook, open this file in a browser:

10 file:///root/.local/share/jupyter/runtime/nbserver -7-open.html
11 Or copy and paste one of these URLs:

12 http://cb0a3641caf0:8888/7token=2

b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
13 or http://127.0.0.1:8888/7?token=2b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e¢60bd
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VONRTNES M From DockerHub

How to set the tutorial up via Docker Il

@ Copy-paste into your browser any link of the form:
http://cb0al3641caf0:8888/7token=TOKEN

@ Your browser should now be showing the following page:

_ Jupyter

Fios

@ open the psyke-tutorial.ipynb notebook
Q@ listen to the speaker presenting the tutorial =)
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