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Premises on Symbolic Knowledge Injection

Symbolic Knowledge Injection I

Definition [Besold et al., 2017, Xie et al., 2019, Calegari et al., 2020]

Symbolic Knowledge Injection (SKI) can be defined as:
any algorithmic procedure affecting how sub-symbolic predictors
draw their inferences in such a way that predictions are either com-
puted as a function of, or made consistent with, some given sym-
bolic knowledge.
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Premises on Symbolic Knowledge Injection

Symbolic Knowledge Injection II

Symbolic knowledge
A symbolic representation consists of: [van Gelder, 1990]

1 a set of symbols;

2 a set of grammatical rules governing the combining of symbols;
3 elementary symbols and any admissible combination of them can be

assigned with meaning.
⇒ Symbolic knowledge is both human and machine interpretable,

first order logic (FOL) is an example of symbolic representation.
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Premises on Symbolic Knowledge Injection

Symbolic Knowledge Injection III

Sub-symbolic predictors
deep neural networks (DNN);

convolutional neural networks (CNN),
recurrent neural networks (RNN);

kernel machines;
basically everything that is sub-symbolic (models consisting of vectors,
tensors, etc. of real numbers with no meaning for a human).
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Premises on Symbolic Knowledge Injection

Symbolic Knowledge Injection IV
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Premises on Symbolic Knowledge Injection

Symbolic Knowledge Injection V

Set of propositional logic rules built from the previous decision tree:

iris(SepalLenght, SepalWidth,PetalLenght,PetalWidth, setosa):-
PetalWidth <= 0.6.

iris(SepalLenght, SepalWidth,PetalLenght,PetalWidth, versicolor):-
PetalWidth > 0.6,PetalWidth <= 1.7,PetalLenght <= 4.9.

iris(SepalLenght, SepalWidth,PetalLenght,PetalWidth, virginica):-
PetalWidth > 0.6,PetalWidth <= 1.5,PetalLenght > 4.9.

iris(SepalLenght, SepalWidth,PetalLenght,PetalWidth, versicolor):-
PetalWidth > 1.5,PetalWidth <= 1.7,PetalLenght > 4.9.

iris(SepalLenght, SepalWidth,PetalLenght,PetalWidth, virginica):-
PetalWidth > 1.7.
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Premises on Symbolic Knowledge Injection

Symbolic Knowledge Injection VI
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Premises on Symbolic Knowledge Injection

Symbolic Knowledge Injection VII

Why?
There are several benefits:

prevent the predictor to become a black-box!;
reduce learning time;
reduce the data size needed for training;
improve predictor’s accuracy;
build a predictor that behave as a logic engine.
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Premises on Symbolic Knowledge Injection

Symbolic Knowledge Injection VIII

Explainability can be achieved: [Gunning, 2016]

Post-hoc explanation
applying an algorithm of symbolic knowledge extraction on a trained
predictor;
output → logic rules that describe the predictor’s behaviour.

By design
constraining the behaviour of predictors that are natively black-boxes
with symbolic knowledge;
structuring the predictor’s architecture with symbolic knowledge;
output → a predictor that does not violate the prior knowledge.
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Premises on Symbolic Knowledge Injection

Symbolic Knowledge Injection IX

How?
There exist three major ways to perform knowledge injection on
sub-symbolic predictors:

constraining, a cost factor proportional to the violation of the
knowledge is introduced during learning;
structuring, the architecture of the predictor is built in such a way to
mimic the knowledge;
embedding, the symbolic knowledge is embedded into a tensor form
and it is given in input as training data to the predictor.
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KILL: Knowledge Injection via Lambda Layer

Algorithm I

KILL: Knowledge Injection via Lambda Layer
A general SKI algorithm that does not impose constrains on the
sub-symbolic predictor to enrich, except being a neural network.

aim → enrich;
predictor → neural network;
how → constraining;
logic → stratified Datalog with negation.

Public implementation on PSyKI. [Magnini et al., 2022]
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KILL: Knowledge Injection via Lambda Layer

Algorithm II
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KILL: Knowledge Injection via Lambda Layer

Algorithm III

Formula C. interpretation Formula C. interpretation
J¬φK η(1− JφK) Jφ ≤ ψK η(JφK− JψK)
Jφ ∧ ψK η(max(JφK, JψK)) Jclass(X̄ , yi )← ψK JψK∗

Jφ ∨ ψK η(min(JφK, JψK)) Jexpr(X̄ )K expr(JX̄ K)
Jφ = ψK η(|JφK− JψK|) JtrueK 0
Jφ 6= ψK J¬(φ = ψ)K JfalseK 1
Jφ > ψK η(0.5− JφK + JψK) JX K x
Jφ ≥ ψK η(JψK− JφK) JkK k
Jφ < ψK η(0.5 + JφK− JψK) Jp(X̄ )K∗∗ Jψ1 ∨ . . . ∨ ψkK

∗ encodes the penalty for the i th neuron
∗∗ assuming predicate p is defined by k clauses of the form:

p(X̄ )← ψ1, . . . , p(X̄ )← ψk
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KILL: Knowledge Injection via Lambda Layer

Algorithm IV

Cost function
Whenever the neural network wrongly predicts a class and violates the prior
knowledge a cost proportional to the violation is added. In this way the
output of the network differs more from the expected one and this affects
the back propagation step.

Y ′ = f (Y , cost)

f = Y x (1 + cost)

cost(X ,Y ) = η(p(X )− (1− Y )) (1− Y because 0 means true)
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KILL: Knowledge Injection via Lambda Layer

Algorithm V
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Case study

Case study I

PHDS: Poker Hand Data Set
Each record represents one poker hand. 5 cards identified by 2 values: suit
and rank. Classes: 10. Training set: 25.010. Test set: 1.000.000.

id S1 R1 S2 R2 S3 R3 S4 R4 S5 R5 class
1 1 10 1 11 1 13 1 12 1 1 9
2 2 11 2 13 2 10 2 12 2 1 9
3 3 12 3 11 3 13 3 10 3 1 9
4 4 10 4 11 4 1 4 13 4 12 9
5 4 1 4 13 4 12 4 11 4 10 9
6 1 2 1 4 1 5 1 3 1 6 8
7 1 9 1 12 1 10 1 11 1 13 8
8 2 1 2 2 2 3 2 4 2 5 8
9 3 5 3 6 3 9 3 7 3 8 8
10 4 1 4 4 4 2 4 3 4 5 8
11 1 1 2 1 3 9 1 5 2 3 1
12 2 6 2 1 4 13 2 4 4 9 0
13 1 10 4 6 1 2 1 1 3 8 0
14 2 13 2 1 4 4 1 5 2 11 0
15 3 8 4 12 3 9 4 2 3 2 1
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Case study

Case study II

Some injected rules.

Class Logic Formulation

Pair

class(R1, . . . ,S5, pair)← pair(R1, . . . ,S5)
pair(R1, . . . ,S5)← R1 = R2
pair(R1, . . . ,S5)← R1 = R3
pair(R1, . . . ,S5)← R1 = R4
pair(R1, . . . ,S5)← R1 = R5
pair(R1, . . . ,S5)← R2 = R3
pair(R1, . . . ,S5)← R2 = R4
pair(R1, . . . ,S5)← R2 = R5
pair(R1, . . . ,S5)← R3 = R4
pair(R1, . . . ,S5)← R3 = R5
pair(R1, . . . ,S5)← R4 = R5
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Case study

Case study III

Two Pairs

class(R1, . . . ,S5, two)← two(R1, . . . ,S5)
two(R1, . . . , S5)← R1 = R2 ∧ R3 = R4
two(R1, . . . , S5)← R1 = R3 ∧ R2 = R4
two(R1, . . . , S5)← R1 = R4 ∧ R2 = R3
two(R1, . . . , S5)← R1 = R2 ∧ R3 = R5
two(R1, . . . , S5)← R1 = R3 ∧ R3 = R5
two(R1, . . . , S5)← R1 = R5 ∧ R2 = R3
two(R1, . . . , S5)← R1 = R2 ∧ R4 = R5
two(R1, . . . ,S5)← R1 = R4 ∧ R2 = R5
two(R1, . . . ,S5)← R1 = R5 ∧ R2 = R4
two(R1, . . . ,S5)← R1 = R3 ∧ R4 = R5
two(R1, . . . ,S5)← R1 = R4 ∧ R3 = R5
two(R1, . . . ,S5)← R1 = R5 ∧ R3 = R4
two(R1, . . . ,S5)← R2 = R3 ∧ R4 = R5
two(R1, . . . ,S5)← R2 = R4 ∧ R3 = R5
two(R1, . . . ,S5)← R2 = R5 ∧ R3 = R4
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Case study

Case study IV

Three of a
Kind

class(R1, . . . ,S5, three)← three(R1, . . . ,S5)
three(R1, . . . , S5)← R1 = R2 ∧ R1 = R3
three(R1, . . . , S5)← R1 = R2 ∧ R1 = R4
three(R1, . . . , S5)← R1 = R2 ∧ R1 = R5
three(R1, . . . , S5)← R1 = R3 ∧ R1 = R4
three(R1, . . . ,S5)← R1 = R3 ∧ R1 = R5
three(R1, . . . ,S5)← R1 = R4 ∧ R1 = R5
three(R1, . . . ,S5)← R2 = R3 ∧ R2 = R4
three(R1, . . . ,S5)← R2 = R3 ∧ R2 = R5
three(R1, . . . ,S5)← R2 = R4 ∧ R2 = R5
three(R1, . . . ,S5)← R3 = R4 ∧ R3 = R5

Flush class(R1, . . . ,S5, flush)← flush(R1, . . . , S5)
flush(R1, . . . ,S5)← S1 = S2 ∧ S1 = S3 ∧ S1 = S4 ∧ S1 = S5

Four of a
Kind

class(R1, . . . ,S5, four)← four(R1, . . . ,S5)
four(R1, . . . , S5)← R1 = R2 ∧ R1 = R3 ∧ R1 = R4
four(R1, . . . ,S5)← R1 = R2 ∧ R1 = R3 ∧ R1 = R5
four(R1, . . . ,S5)← R1 = R2 ∧ R1 = R4 ∧ R1 = R5
four(R1, . . . ,S5)← R1 = R3 ∧ R1 = R4 ∧ R1 = R5
four(R1, . . . ,S5)← R2 = R3 ∧ R2 = R4 ∧ R2 = R5
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Case study

Case study V

Setup
neural network: 3-layers fully connected (128, 128, 10 neurons per
layer respectively) with rectified linear unit (ReLU) as activation
function, except for the last layer (softmax);
knowledge: see previous slides;
categorical cross-entropy as loss function
training: Adams as optimiser for 100 epochs (with early stop
conditions);
experiment repeated 30 times to have a statistic significant population.
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Case study

Case study VI

Metric Classic KILL Metric Classic KILL
Accuracy 0.962 0.978 Acc. Straight 0.415 0.509
Macro-F1 0.512 0.538 Acc. Flush 0.002 0.002
Weighted-F1 0.96 0.977 Acc. Full 0.628 0.69
Acc. Nothing 0.977 0.989 Acc. Four 0.186 0.19
Acc. Pair 0.968 0.985 Acc. Straight F. 0.003 0
Acc. Two Pairs 0.867 0.914 Acc. Royal F. 0 0
Acc. Three 0.913 0.922
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Case study

Case study VII
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Discussion and future works

Discussion and future works I

Discussion
the case study shows that KILL can be applied with success when the
injected knowledge is correct;
predictions for less represented classes are not improved as much as for
more frequent ones (this is very likely a common feature for all SKI
algorithms based on constraining).
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Discussion and future works

Discussion and future works II

Future works
explore scenarios where the injected knowledge is not perfectly correct;
test the performances of KILL inside the train-extract-fix-inject
workflow.
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