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Concerning human (and machine) reasoning

The three ways

@ induction
a kind of reasoning that uses particular examples in order to reach a
general conclusion about something
— machine learning (e.g., neural networks);

@ deduction
the act or process of using logic or reason to form a conclusion or
opinion about something
— symbolic artificial intelligence (e.g., logic programs);

@ abduction
the forming and accepting on probation of a hypothesis to explain
surprising facts
— abductive logic programming.
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Concepts we need to know |

Symbolic knowledge

A symbolic representation of knowledge consists of:

@ a set of symbols;

@ a set of grammatical rules governing the combining of symbols;
© elementary symbols and any admissible combination of them can be
assigned with meaning.

= Symbolic knowledge is both human and machine interpretable,
o first order logic (FOL) is an example of symbolic representation.
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Concepts we need to know Il

Sub-symbolic data
@ ML methods, and sub-symbolic approaches in general, represent data
as arrays of real numbers, and knowledge as functions over such data;
@ despite numbers are technically symbols as well, we cannot consider
arrays and their functions as symbolic knowledge representation (KR)
means;

@ sub-symbolic approaches frequently violate ltems 2 and 3.
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Concepts we need to know Il

Local representation
@ Each number of the array has a well-defined meaning;

@ example — iris dataset sample, array with 5 elements where each
element has meaning (sepal/petal length/width and class).

Distributed representation

@ Each number of the array is meaningless, unless it is considered along
with its neighbourhood;

@ example — images represented as w x h matrices of numbers in range
[0,1]. (Violation of item 3)
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Concepts we need to know IV

petalwidth

<=0.6

a >0.6
Iris-setosa (50)

<=1. >1.7
petallenght Iris-virginica (46/1)
<=49 549
petalwidth

Iris-versicolor (48/1)
<=1.5 >1.5
Iris-virginica (3) Iris-versicolor (3/1)

Error: 0.346668 Steps: 26926
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Concepts we need to know V

Set of propositional logic rules built from the previous decision tree:

iris(SepalLenght, SepalWidth, PetalLenght, PetalWidth, setosa):-
PetalWidth =< 0.6.

iris(SepalLenght, SepalWidth, PetalLenght, PetalWidth, versicolor):-
PetalWidth > 0.6, PetalWidth =< 1.7, PetalLenght =< 4.9.

iris(SepalLenght, SepalWidth, PetalLenght, PetalWidth, virginica):-
PetalWidth > 0.6, PetalWidth =< 1.5, PetalLenght > 4.9.

iris(SepalLenght, SepalWidth, PetalLenght, PetalWidth, versicolor):-
PetalWidth > 1.5, PetalWidth =< 1.7, PetalLenght > 4.9.

iris(SepalLenght, SepalWidth, PetalLenght, PetalWidth, virginica):-
PetalWidth > 1.7.
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Concepts we need to know VI

A

Interpretability

Interpretability vs performance trade-off

O Generalised linear models

O Decision trees

O K Nearest Neighbours

O Random Forest

O Support Vector Machines

O XGboost

O Neural Networks

Predictive Performance
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Symbolic Knowledge Extraction

Next in Line. ..

© Symbolic Knowledge Extraction
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Symbolic Knowledge Extraction
Definition

We define Symbolic Knowledge Extraction (SKE) as:

[Andrews et al., 1995, d'Avila Garcez et al., 2001, Hailesilassie, 2016, Zilke et al., 2016, Guidotti et al., 2018]

any algorithmic procedure accepting trained sub-symbolic predic-
tors as input and producing symbolic knowledge as output, in such
a way that the extracted knowledge reflects the behaviour of the
predictor with high fidelity.

@ This will be just a brief introduction, | will focus more on Symbolic
Knowledge Injection rather than Symbolic Knowledge Extraction;

@ for more details and questions about SKE please contact
— Federico Sabbatini f.sabbatini@unibo.it
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Why SKE?

Explainability can be achieved:

By post-hoc explanation

@ applying an algorithm of symbolic knowledge extraction on a trained
predictor;

@ output — logic rules (or other symbolic means) that describe the
predictor’'s behaviour.
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Symbolic Knowledge Extraction

Taxonomy |

What kind of ML predictor does the SKE method support?
@ pedagogical: any supervised predictor

e decompositional: a particular sort of ML predictor (e.g., NN, SVM,
DT)

A

Input data
e binary: X ={0,1}"
o discrete: X € {x1,...,xp}"

@ continuous: X C R”"

.
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Symbolic Knowledge Extraction

Taxonomy ||

Output shape

@ rule list: i.e. ordered sequences of if-then-else rules
@ decision tree: hierarchical set of if-then-else rules involving a
comparison among a variable and a constant

@ decision table: 2D tables summarising decisions for each possible
assignment of variables
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Symbolic Knowledge Extraction

Taxonomy Il

Output expressiveness

@ propositional: boolean statements + logic connectives
o there including arithmetic comparisons among variables and constants

@ fuzzy: hierarchical set of if-then-else rules involving a comparison
among a variable and a constant

@ oblique: boolean statements + logic connectives + arithmetic
comparisons

@ M-of-N: any of the above + statements like m —of — {¢1,...,¢n}
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Platform for Symbolic Knowledge Extraction

Next in Line. ..

© Platform for Symbolic Knowledge Extraction
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Platform for Symbolic Knowledge Extraction

Gentle presentation

Platform for Symbolic Knowledge Extraction (PSyKE) [sabbatini et 2l 20212]

@ PSyKl is intended as a library of SKE algorithms for data/computer
scientists;

@ it is written in Python and it is compliant with scikit-learn standard
nomenclature, i.e., you can call a SKE algorithm upon a ML model
that has the predict method;

@ code is public available on https://github.com/psykei/psyke-python

@ to install run pip install psyke

o currently PSyKE supports several SKI algorithms, among which:
Classification and Regression Trees (CART)

Rule Extraction As Learning (REAL)

Trepan

ITER

GridEx
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Symbolic Knowledge Injection

Next in Line. ..

@ Symbolic Knowledge Injection
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Symbolic Knowledge Injection
Definition

We define Symbolic Knowledge Injection(SKI) as:

[Besold et al., 2017, Xie et al., 2019, Calegari et al., 2020]

any algorithmic procedure affecting how sub-symbolic predictors
draw their inferences in such a way that predictions are either com-
puted as a function of, or made consistent with, some given sym-
bolic knowledge.
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Why SKI? |

There are several benefits:

@ prevent the predictor to become a black-box!;
reduce learning time;
reduce the data size needed for training;

improve predictor’s accuracy;

build a predictor that behave as a logic engine.
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Why SKI? II

Explainability can be achieved:

By design

@ constraining the behaviour of predictors that are natively black-boxes
with symbolic knowledge;

@ structuring the predictor’s architecture with symbolic knowledge;

@ output — a predictor that does not violate the prior knowledge.
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Taxonomy

Aim — main purpose of the injection;

Predictors — target of the injection;

How — in which way the injection is performed;

e 6 o6 o

Logic — what kind of logic formalism is used to represent knowledge.
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Symbolic Knowledge Injection
Aim

Enrich (learning support)

@ reduce learning time;
@ reduce the data size needed for training;

@ improve predictor’s accuracy.

Manifold (symbolic knowledge manipulation)

@ logic inference;
@ information retrieval;

@ knowledge base completion /fusion.
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Symbolic Knowledge Injection

Predictors

What kind of predictors are feasable for SKI?

@ in theory every sub-symbolic predictors;

@ in particular (deep) neural networks are the preferred targets for
several reasons:
e easy to manipulate;
e high performance;
e technological maturity.
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Symbolic Knowledge Injection
How |

Injection families

There exist three major ways to perform knowledge injection on
sub-symbolic predictors:

@ constraining, a cost factor proportional to the violation of the
knowledge is introduced during learning;

@ structuring, the architecture of the predictor is built in such a way to
mimic the knowledge;

@ embedding, the symbolic knowledge is embedded into a tensor form
and it is given in input as training data to the predictor.
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Symbolic Knowledge Injection

How ||

Constraining

o Knowledge cost factor is introduced in the loss function;
o for NN the cost affects backpropagation during
training.
= Predictor does not violate the prior knowledge (to a certain extent).
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How Il

Structuring

@ Inner architecture is shaped to be able to “mimic” the knowledge;
@ for NN this means ad-hoc layers.
= Predictor directly exploits knowledge when needed.

1 likes (john, jane). .
1 lkes(jane, john) [ >
1 likes(jack, jane). :
1 friends(X, S(X, Y), '
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Symbolic Knowledge Injection
How IV

Embedding

@ Symbolic knowledge is embedded into a tensor form;

e this is used as predictor's input data (alone or with a “standard”
dataset).

= Predictor's aim is manifold in most cases.

Magnini et al.  (DISI, Univ. Bologna) Dive into SKE & SKI XAl project 25 /52



Symbolic Knowledge Injection
Logic |

indirect representation of data,

define a relation/set by describing its elements via other relations/sets.

direct representation of data,

explicit definition of entities involved.
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Logic Il

Most used logic formalisms

@ Recursive intensional predicates are very expressive and powerful, as
they enable the description of infinite sets via a finite (and commonly
small) amount of formulae;

@ however, most sub-symbolic predictors are NN, the vast majority of
them are direct acyclic graph (DAG) — no support to recursion;

@ therefore one of the most common logic is just propositional logic (PL)
followed by knowledge graph (KG) and then by first order logic (FOL).
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Platform for Symbolic Knowledge Injection

Next in Line. ..

© Platform for Symbolic Knowledge Injection
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Platform for Symbolic Knowledge Injection

Gentle presentation |

Platform for Symbolic Knowledge Injection (PSyKI) [Magnini et 2!, 20220]

o PSyKlis intended as a library of SKI algorithms for data/computer
scientists;

it is written in Python and supports Tensorflow;
code is public available on https://github.com/psykei/psyki-python
to install run pip install psyki

currently PSyKI supports the following SKI algorithms:
e Knowledge Injection via Network Structuring (KINS)

o Knowledge Injection via Lambda Layer (KILL)
o Knowledge Based Artificial Neural Network (KBANN)
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Platform for Symbolic Knowledge Injection

Gentle presentation |l

General code snippet for PSyKI usage.

from psyki.ski import Injector
from psyki.logic.datalog.grammar.adapters.antlr4 import get_formula_from_string

# ...

# For this algorithm we need to explicitly specify the mapping
# between feature names and variable names
feature_mapping = {...}

# Symbolic knowledge
with open(filename) as f:
rows = f.readlines()
# 1 - Parse textual logic rules into visitable Formulae
knowledge = [get_formula_from_string(row) for row in rows]

predictor = create_fully_connected_nn()

# 2 and 3 - Injector creation (internal fuzzification) and injection
injector = Injector.kins(predictor, feature_mapping)
predictor_with_knowledge = injector.inject (knowledge)

# 4 - Training
predictor_with_knowledge.fit(train_x, train_y)

Magnini et al.  (DISI, Univ. Bologna) Dive into SKE & SKI XAl project 29 /52



Platform for Symbolic Knowledge Injection

Knowledge Injection via Network Structuring |

KINS: Knowledge Injection via Network Structuring

A general SKI algorithm that does not impose constrains on the
sub-symbolic predictor to enrich.

@ aim — enrich;
o predictor — neural network;

@ how — structuring;

@ logic — stratified Datalog with negation.
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Network Structuring |l
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Network Structuring Il

Formula ‘ C. interpretation H Formula ‘ C. interpretation
[-¢] n(1 - [¢]) lo <] n(1+[¥] - [¢])
lo A Y] n(min([¢], [+])) [class(X,yi) < ¢] vl
[¢ VY] n(max([¢], [¥])) [expr(X)] expr([X])
lo =] n([=(¢ # ¥)]) [true] 1
lo # ¢] n(|[¢] — [¥]1) [false] 0
[¢>¢] | n(max(0,5 + [¢] — [¥])) X1 x
lo > 9] n(1+[¢] - [¥]) [x] k
[6 <ol | n(max(0, 2+l -e]) | [(1 [V .. V]
* encodes the value for the ith output
** assuming p is defined by k clauses of the form:
p(X) 1, ..., p(X) <
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Network Structuring IV

HOR RONTET [
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Case study |

PSJGS: Primate Splice-Junction Gene Sequences dataset

EI-stop ::- @-3 ’TAA’.

EI-stop @-3 ’TAG’.

EI-stop : @-3 ’TGA’.

EI-stop : @-4 °TAA’.

EI-stop ::- @-4 ’TAG’.

EI-stop : @-4 °TGA’. Class, Id, DNA-sequence

EI-stop ::- @-5 ’TAA’.

EI-stop ::- @-5 TAG’. EI,ATRINS-DONOR-521,CCAGCTGCAT. . . AGCCAGTCTG

EI-stop ::- @-5 *TGA’. EI,ATRINS-DONOR-905,AGACCCGCCG. . .GTGCCCCCGC
EI,BABAPOE-DONOR-30,GAGGTGAAGG. . . CACGGGGATG

IE-stop :: JTAA’ . .

IE-stop :: YTAG’ . IE,ATRINS-ACCEPTOR-701,TTCAGCGGCC. . . GCCCTGTGGA

IE-stop : YTGA” . IE,ATRINS-ACCEPTOR-1678,GGACCTGCTC. . .GGGGGCTCTA

IE-stop : JTAA” . 1IE,BABAPOE-ACCEPTOR-801,GCGGTTGATT. . . AAGATGAAGG

IE-stop : YTAG’ . .

IE-stop :: JTGA” . N, AGMKPNRSB-NEG-1,CAAAAGAACA. . .CAAGGCTACA

IE-stop : JTAA’ . N,AGMORS12A-NEG-181,AGGGAGGTGT. . . GGGCATGGGG

IE-stop *TAG’ . N, AGMORS9A-NEG-481,TGGTCAATTC. . . TCTTGCTCTG

IE-stop :: >TGA’ .

pyramidine-rich :- 6 of (@-15 ’YYYYYYYYYY’). 3190 Records

EI :- @-3 ’MAGGTRAGT’, not(EI-stop).

IE :- pyramidine-rich, @-3 ’YAGG’,

not (IE-stop) .
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Platform for Symbolic Knowledge Injection

Case study |l

Magnini et al.  (DISI, Univ. Bologna)

Class | Logic Formulation
class(X,ei) «+X_3=mAX2=aAX_1=gAX;1=gA
Xpp=tAXyz=a=rAXpu=aA
X5 =g A Xp6 =t A—(ei_stop(X))
ei_stop(X)+ X3=tAXo=aAXi=a
ei _stop(X) «— X3=tAXo2=aAXi1=g¢g
£l ei_stop(X)+ X 3=tAXo2=gAX_1=a
ei_stop(X) ¢+ Xa=tAX3=aAXo=a
ei_stop(X) X a=tAX3=aAXo=
stop()_()eX s=tAX3=gANXo2=a
stop()_()eX s=tAXas=aAX3=a
stop()_()eX,g,ft/\X,L,fa/\X 3=¢g
ei_stop(X) + X5 =tAX4=gAX3=a
7777777 cl Bgsf)? ,ie) < pyramidine_rich(X) A =(ie_stop(X)) A~~~
X3=yAXo2=aAXa=gAX1=g
pyramidine_ rich(X) <6 < (X_15 =y +...+ X6 =7¥)
ie_stop(X) < Xo=tAXpz3=aAXu=a
je_stop(X) ¢« X2 =tAXj3=aAXia=g
IE ieistop():() —Xpp=tAX3=gAXuu=a
ie_stop(X) « Xyz=tAXpuu=aAXis=a
je_stop(X) ¢ X3 =t AXg=aAXs=g
je stop(X) ¢ X3 =t AXa=gAXs=a
je_stop(X) < Xia =t A X5 =aAXg=a
je_stop(X) ¢ Xia =t AXs=aAXys=g
je stop(X) ¢ Xia =t AX5=gAXs=a
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Case study Il

4 295 0
(0.38) (0.00) 08
— 0.6
K
=gl 25 31
] (0.03) (0.04)
= 0.4
3 0 0.2
N1 (0.00) (0.00)
T T 0.0
< <
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Case study IV

DNN

KBANN

Backpropagation

PEBLS

D3

NearestNeighbour

0 10 20 300.0 25 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 125
Error rate
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Lambda Layer |

Knowledge Injection via Lambda Layer (KILL)

A general SKI algorithm that does not impose constrains on the
sub-symbolic predictor to enrich, except being a neural network.

@ aim — enrich;
@ predictor — neural network;
@ how — constraining;

@ logic — stratified Datalog with negation.
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Lambda Layer Il

[ [ [
X )|H1| )I"'I )|Hn| > Y
Lm—d Lme—d R

TR g P g

i
/ﬂlHll > > Hp t > Y

o i o f(Y,cost)
p

N
KB Iy

-
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Lambda Layer Il

Formula \ C. interpretation H Formula \ C. interpretation
[~¢] n(1 —[¢f) [o < 9] n(l¢] - [¥])
[onv] | n(max([¢], [¢])) [class(X,yi) < ¢] [1*
[¢ V] n(min([4], [¢])) [expr(X)] expr([X])
[¢ =] n(lle] — [¥11) [true] 0
[¢ # ] [-(¢ =¥)] [false] 1
[¢>4] | n(0.5—[0] + [¢]) [X1 x
[¢ > 9] n([¥] - [¢]) [k] _ k
[¢ <4l | n(0.5+[o] —[¥]) [p(X)]" [thr V..oV ah]

* encodes the penalty for the it neuron

** assuming predicate p is defined by k clauses of the form:
p(X) < 1, ..., p(X) +
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Lambda Layer IV

Whenever the neural network wrongly predicts a class and violates the prior
knowledge a cost proportional to the violation is added. In this way the
output of the network differs more from the expected one and this affects
the back propagation step.

Y' = f(Y, cost)
f =Y x (1+ cost)
cost(X,Y)=n(p(X)—(1—-Y)) (1—Y because 0 means true)
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Lambda Layer V

NEURAL NETWORK

CLASSES-CONSTANTS

TRAINING DATA

SCHEMA

MAPPING BETWEEN
FEATURES-VARIABLES
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PRIOR KNOWLEDGE

KILL INJECTOR
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Platform for Symbolic Knowledge Injection

Case study |

PHDS: Poker Hand Data Set

Each record represents one poker hand. 5 cards identified by 2 values: suit
and rank. Classes: 10. Training set: 25.010. Test set: 1.000.000.

id | S1|R1|S2|R2|

S3| R3|S4| R4 |S5]|R5 | class

1

0 ~NO O W
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10
11
12
13
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Case study |l

Some injected rules.

Class Logic Formulation

class(R1, ..., Ss,pair) < pair(R1,...,Ss)
pair(Rl, .. .,55) —~ Ri =R

pal'l’(R]_7 .. .755) <~ R]_ = R3
pair(Rl, .. .,55) — Ri=Ra
pair(Ri,...,S5) < Ri = Rs
Pair pair(Rl, .. .,55) — Ry=R3
paiI’(R]_7 .. A,55) — R2 = R4
pair(Rl, .o .755) — R = R5
pair(Rl, .. .,55) «— R3 = R4
pair(Ry,...,S5) < R3 = Rs
pair(Rl, .. .,55) < R4 = R5
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Platform for Symbolic Knowledge Injection

Case study |l
********* cass(Ri. . TSe bwo) « twolRi. L 8) " T T T T

tWO(Rl,...755)<—R1:Rz/\R3:R4
tWO(Rl,...,S5)(7R1=R3/\R2:R4
tWO(Rl,...755)<—R1:R4/\R2:R3
tWO(Rl,...,S5)(7R1=R2/\R3:R5
tWO(Rl,...,55)<—R1:R3/\R3:R5
tWO(Rl,...,55)(—R1=R5/\R2:R3

. two(R1,...,S5) < R1 = R ARy = Rs

Two Pairs i‘WOERl7 .. .,55; — R =RsANRx=Rs
tWO(Rl,...,S5)<7R1=R5/\R2:R4
tWO(Rl,...,55)<—R1:R3/\R4:R5
tWO(Rl,...,S5)<7R1=R4/\R3:R5
tWO(Rl,...,55)<—R1:Rs/\R3:R4
tWO(Rl,...,55)<—R2=R3/\R4:R5
tWO(Rl,...,Sg,)<—R2:R4/\R3:R5

i‘WO(Rl7 755)<—R2— Rs AR3 = Ry
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Case study IV

class(Ri1, ..., S5, three) « three(Ry, ..., Ss)
three(Rl, .. .,55) — R =R:AR1 =Rz
three(Rl, .. .755) —Ri=R:AR1 =Ry
three(Rl, .. .755) —~Ri=R:AR1=Rs
(Rl,...,55)<7R1=R3/\R1=R4
Three of a three(Ry,...,S5) < Ri = RsAR1 = Rs
Kind three(Rl, .. .,55) «— Ri=R4ANR1 =Rs
three(Rl, .. .,55) — Ry=R3ANRx=Ry
three(Rl, .. .,55) — R=R3ANRx=Rs
three(Rl, .. .755) — R=RsANRx=Rs
(
“““““ cass(Re,. . S5, FTush) < flush(RL, &)~~~ """ """ 7°
flush(R1,...,55) + S1 =S5 ANS1=5A5 =54N51 =55
“““““ cass(Re - S Four) & four(Re, . .8) ~ """
fOUf(R]_,...,55)<—R1:R2/\R1:R3/\R1:R4
Four of a fOUr(R]_,...,55)<—R1:R2/\R1=R3/\R1=R5
four(R]_,...755)%R1:R2/\R1:R4/\R1:R5
fOUr(Rl,...,Sg,)(—R1=R3/\R1=R4/\R1=R5
fOUr(R]_,...,Ss)(—R2:R3/\R2:R4/\R2:R5
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Case study V

@ neural network: 3-layers fully connected (128, 128, 10 neurons per
layer respectively) with rectified linear unit (ReLU) as activation
function, except for the last layer (softmax);

@ knowledge: see previous slides;
@ categorical cross-entropy as loss function

e training: Adams as optimiser for 100 epochs (with early stop
conditions);

@ experiment repeated 30 times to have a statistic significant population.
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Platform for Symbolic Knowledge Injection

Case study VI

Metric ‘ Classic KILL H Metric ‘ Classic KILL
Accuracy 0.962 0.978 || Acc. Straight 0.415 0.509
Macro-F1 0.512 0.538 || Acc. Flush 0.002 0.002
Weighted-F1 0.96 0.977 || Acc. Full 0.628  0.69
Acc. Nothing 0.977 0.989 || Acc. Four 0.186 0.19
Acc. Pair 0.968 0.985 || Acc. Straight F. 0.003 0
Acc. Two Pairs 0.867 0.914 || Acc. Royal F. 0 0
Acc. Three 0.913 0.922
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Case study VII

Class accuracy distributions

1o I classic
Es °© ° [ knowledge
0.8 L) ° °©
°
°

S0 °
9
©
e
5
8 o
<

0a

o
°
02
°© °
00 o
Nothing Pair Two Pairs  Three Straight Flush Full Four Straight . Royal F.
Classes
Magnini et al.  (DISI, Univ. Bologna) Dive into SKE & SKI XAl project 49 /52



Open literature research lines

Next in Line. ..

© Open literature research lines
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Multi-Agent Systems

@ agent to agent explanation
— SKE + SKI + explanation;

@ logic as lingua franca for communication between heterogeneous
entities;

@ knowledge sharing and knowledge exploitation among agents;

@ symbolic techniques integrated with sub-symbolic ones
— representing and manipulating cognitive processes and their results.
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