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Premises

Concerning human (and machine) reasoning

The three ways
induction
a kind of reasoning that uses particular examples in order to reach a
general conclusion about something
→ machine learning (e.g., neural networks);
deduction
the act or process of using logic or reason to form a conclusion or
opinion about something
→ symbolic artificial intelligence (e.g., logic programs);
abduction
the forming and accepting on probation of a hypothesis to explain
surprising facts
→ abductive logic programming.
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Premises

Concepts we need to know I

Symbolic knowledge
A symbolic representation of knowledge consists of: [van Gelder, 1990]

1 a set of symbols;

2 a set of grammatical rules governing the combining of symbols;
3 elementary symbols and any admissible combination of them can be

assigned with meaning.
⇒ Symbolic knowledge is both human and machine interpretable,

first order logic (FOL) is an example of symbolic representation.
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Premises

Concepts we need to know II

Sub-symbolic data
ML methods, and sub-symbolic approaches in general, represent data
as arrays of real numbers, and knowledge as functions over such data;
despite numbers are technically symbols as well, we cannot consider
arrays and their functions as symbolic knowledge representation (KR)
means;
sub-symbolic approaches frequently violate Items 2 and 3.
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Premises

Concepts we need to know III

Local representation
Each number of the array has a well-defined meaning;
example → iris dataset sample, array with 5 elements where each
element has meaning (sepal/petal length/width and class).

Distributed representation
Each number of the array is meaningless, unless it is considered along
with its neighbourhood;
example → images represented as w x h matrices of numbers in range
[0, 1]. (Violation of item 3)
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Premises

Concepts we need to know IV
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Premises

Concepts we need to know V

Set of propositional logic rules built from the previous decision tree:

iris(SepalLenght, SepalWidth,PetalLenght,PetalWidth, setosa):-
PetalWidth =< 0.6.

iris(SepalLenght, SepalWidth,PetalLenght,PetalWidth, versicolor):-
PetalWidth > 0.6,PetalWidth =< 1.7,PetalLenght =< 4.9.

iris(SepalLenght, SepalWidth,PetalLenght,PetalWidth, virginica):-
PetalWidth > 0.6,PetalWidth =< 1.5,PetalLenght > 4.9.

iris(SepalLenght, SepalWidth,PetalLenght,PetalWidth, versicolor):-
PetalWidth > 1.5,PetalWidth =< 1.7,PetalLenght > 4.9.

iris(SepalLenght, SepalWidth,PetalLenght,PetalWidth, virginica):-
PetalWidth > 1.7.
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Premises

Concepts we need to know VI

Interpretability vs performance trade-off
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Predictive Performance

Generalised linear models

Decision trees

K Nearest Neighbours

Random Forest

Support Vector Machines

XGboost

Neural Networks
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Symbolic Knowledge Extraction

Definition

We define Symbolic Knowledge Extraction (SKE) as:
[Andrews et al., 1995, d’Avila Garcez et al., 2001, Hailesilassie, 2016, Zilke et al., 2016, Guidotti et al., 2018]

any algorithmic procedure accepting trained sub-symbolic predic-
tors as input and producing symbolic knowledge as output, in such
a way that the extracted knowledge reflects the behaviour of the
predictor with high fidelity.

Notes
This will be just a brief introduction, I will focus more on Symbolic
Knowledge Injection rather than Symbolic Knowledge Extraction;
for more details and questions about SKE please contact
→ Federico Sabbatini f.sabbatini@unibo.it
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Symbolic Knowledge Extraction

Why SKE?

Explainability [Gunning, 2016] can be achieved:

By post-hoc explanation
applying an algorithm of symbolic knowledge extraction on a trained
predictor;
output → logic rules (or other symbolic means) that describe the
predictor’s behaviour.
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Symbolic Knowledge Extraction

Taxonomy I

Translucency
What kind of ML predictor does the SKE method support?

pedagogical: any supervised predictor
decompositional: a particular sort of ML predictor (e.g., NN, SVM,
DT)

Input data
binary: X ≡ {0, 1}n

discrete: X ∈ {x1, . . . , xn}n

continuous: X ⊆ Rn
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Symbolic Knowledge Extraction

Taxonomy II

Output shape
rule list: i.e. ordered sequences of if-then-else rules
decision tree: hierarchical set of if-then-else rules involving a
comparison among a variable and a constant
decision table: 2D tables summarising decisions for each possible
assignment of variables
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Symbolic Knowledge Extraction

Taxonomy III

Output expressiveness
propositional: boolean statements + logic connectives

there including arithmetic comparisons among variables and constants

fuzzy: hierarchical set of if-then-else rules involving a comparison
among a variable and a constant
oblique: boolean statements + logic connectives + arithmetic
comparisons
M-of-N: any of the above + statements like m − of− {ϕ1, . . . , ϕn}
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Platform for Symbolic Knowledge Extraction

Gentle presentation

Platform for Symbolic Knowledge Extraction (PSyKE) [Sabbatini et al., 2021a]

PSyKI is intended as a library of SKE algorithms for data/computer
scientists;
it is written in Python and it is compliant with scikit-learn standard
nomenclature, i.e., you can call a SKE algorithm upon a ML model
that has the predict method;
code is public available on https://github.com/psykei/psyke-python
to install run pip install psyke
currently PSyKE supports several SKI algorithms, among which:

Classification and Regression Trees (CART) [Breiman et al., 1984]

Rule Extraction As Learning (REAL) [Craven and Shavlik, 1994]

Trepan [Craven and Shavlik, 1996]

ITER [Huysmans et al., 2006]

GridEx [Sabbatini et al., 2021b]
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Symbolic Knowledge Injection

Definition

We define Symbolic Knowledge Injection(SKI) as:
[Besold et al., 2017, Xie et al., 2019, Calegari et al., 2020]

any algorithmic procedure affecting how sub-symbolic predictors
draw their inferences in such a way that predictions are either com-
puted as a function of, or made consistent with, some given sym-
bolic knowledge.
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Symbolic Knowledge Injection

Why SKI? I

There are several benefits:
prevent the predictor to become a black-box!;
reduce learning time;
reduce the data size needed for training;
improve predictor’s accuracy;
build a predictor that behave as a logic engine.
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Symbolic Knowledge Injection

Why SKI? II

Explainability [Gunning, 2016] can be achieved:

By design
constraining the behaviour of predictors that are natively black-boxes
with symbolic knowledge;
structuring the predictor’s architecture with symbolic knowledge;
output → a predictor that does not violate the prior knowledge.
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Symbolic Knowledge Injection

Taxonomy

Dimensions
Aim → main purpose of the injection;
Predictors → target of the injection;
How → in which way the injection is performed;
Logic → what kind of logic formalism is used to represent knowledge.
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Symbolic Knowledge Injection

Aim

Enrich (learning support)
reduce learning time;
reduce the data size needed for training;
improve predictor’s accuracy.

Manifold (symbolic knowledge manipulation)
logic inference;
information retrieval;
knowledge base completion/fusion.
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Symbolic Knowledge Injection

Predictors

What kind of predictors are feasable for SKI?
in theory every sub-symbolic predictors;
in particular (deep) neural networks are the preferred targets for
several reasons:

easy to manipulate;
high performance;
technological maturity.
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Symbolic Knowledge Injection

How I

Injection families
There exist three major ways to perform knowledge injection on
sub-symbolic predictors:

constraining, a cost factor proportional to the violation of the
knowledge is introduced during learning;
structuring, the architecture of the predictor is built in such a way to
mimic the knowledge;
embedding, the symbolic knowledge is embedded into a tensor form
and it is given in input as training data to the predictor.
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Symbolic Knowledge Injection

How II

Constraining
Knowledge cost factor is introduced in the loss function;
for NN the cost affects backpropagation [Baldi and Sadowski, 2016] during
training.
⇒ Predictor does not violate the prior knowledge (to a certain extent).

 likes (john, jane).
 likes(jane, john).
 likes(jack, jane).
 friends(X, Y) :- likes(X, Y), likes(Y, X).
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Symbolic Knowledge Injection

How III

Structuring
Inner architecture is shaped to be able to “mimic” the knowledge;
for NN this means ad-hoc layers.
⇒ Predictor directly exploits knowledge when needed.

 likes (john, jane).
 likes(jane, john).
 likes(jack, jane).
 friends(X, Y) :- likes(X, Y), likes(Y, X).
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Symbolic Knowledge Injection

How IV

Embedding
Symbolic knowledge is embedded into a tensor form;
this is used as predictor’s input data (alone or with a “standard”
dataset).
⇒ Predictor’s aim is manifold in most cases.

 likes (john, jane).
 likes(jane, john).
 likes(jack, jane).
 friends(X, Y) :- likes(X, Y), likes(Y, X).


James

Davis L.A.

Lakersplays_for

plays_
for

lives_in

located_inlocated_in Embedder 0.1 0.7 0.9 0.5

Dataset
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Symbolic Knowledge Injection

Logic I

Intensional
indirect representation of data,
define a relation/set by describing its elements via other relations/sets.

Extensional
direct representation of data,
explicit definition of entities involved.
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Symbolic Knowledge Injection

Logic II

Most used logic formalisms
Recursive intensional predicates are very expressive and powerful, as
they enable the description of infinite sets via a finite (and commonly
small) amount of formulæ;
however, most sub-symbolic predictors are NN, the vast majority of
them are direct acyclic graph (DAG) → no support to recursion;
therefore one of the most common logic is just propositional logic (PL)
followed by knowledge graph (KG) and then by first order logic (FOL).
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Platform for Symbolic Knowledge Injection

Gentle presentation I

Platform for Symbolic Knowledge Injection (PSyKI) [Magnini et al., 2022b]

PSyKIis intended as a library of SKI algorithms for data/computer
scientists;
it is written in Python and supports Tensorflow;
code is public available on https://github.com/psykei/psyki-python
to install run pip install psyki
currently PSyKI supports the following SKI algorithms:

Knowledge Injection via Network Structuring (KINS) [Magnini et al., 2022a]

Knowledge Injection via Lambda Layer (KILL) [Magnini et al., 2022c]

Knowledge Based Artificial Neural Network (KBANN)
[Towell and Shavlik, 1994]
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Platform for Symbolic Knowledge Injection

Gentle presentation II

General code snippet for PSyKI usage.

from psyki.ski import Injector
from psyki.logic.datalog.grammar.adapters.antlr4 import get_formula_from_string

# ...

# For this algorithm we need to explicitly specify the mapping
# between feature names and variable names
feature_mapping = {...}

# Symbolic knowledge
with open(filename) as f:

rows = f.readlines()
# 1 - Parse textual logic rules into visitable Formulae
knowledge = [get_formula_from_string(row) for row in rows]

predictor = create_fully_connected_nn()
# 2 and 3 - Injector creation (internal fuzzification) and injection
injector = Injector.kins(predictor, feature_mapping)
predictor_with_knowledge = injector.inject(knowledge)

# 4 - Training
predictor_with_knowledge.fit(train_x, train_y)
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Network Structuring I

KINS: Knowledge Injection via Network Structuring
A general SKI algorithm that does not impose constrains on the
sub-symbolic predictor to enrich.

aim → enrich;
predictor → neural network;
how → structuring;
logic → stratified Datalog with negation.
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Network Structuring II
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Network Structuring III

Formula C. interpretation Formula C. interpretation
J¬ϕK η(1− JϕK) Jϕ ≤ ψK η(1 + JψK− JϕK)
Jϕ ∧ ψK η(min(JϕK, JψK)) Jclass(X̄ , yi )← ψK JψK∗

Jϕ ∨ ψK η(max(JϕK, JψK)) Jexpr(X̄ )K expr(JX̄ K)
Jϕ = ψK η(J¬(ϕ ̸= ψ)K) JtrueK 1
Jϕ ̸= ψK η(|JϕK− JψK|) JfalseK 0
Jϕ > ψK η(max(0, 1

2 + JϕK− JψK)) JX K x
Jϕ ≥ ψK η(1 + JϕK− JψK) JkK k
Jϕ < ψK η(max(0, 1

2 + JψK− JϕK)) Jp(X̄ )K∗∗ Jψ1 ∨ . . . ∨ ψkK

∗ encodes the value for the i th output
∗∗ assuming p is defined by k clauses of the form:

p(X̄ )← ψ1, . . . , p(X̄ )← ψk
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Network Structuring IV
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Platform for Symbolic Knowledge Injection

Case study I

PSJGS: Primate Splice-Junction Gene Sequences dataset
EI-stop ::- @-3 ’TAA’.
EI-stop ::- @-3 ’TAG’.
EI-stop ::- @-3 ’TGA’.
EI-stop ::- @-4 ’TAA’.
EI-stop ::- @-4 ’TAG’.
EI-stop ::- @-4 ’TGA’.
EI-stop ::- @-5 ’TAA’.
EI-stop ::- @-5 ’TAG’.
EI-stop ::- @-5 ’TGA’.

IE-stop ::- @1 ’TAA’.
IE-stop ::- @1 ’TAG’.
IE-stop ::- @1 ’TGA’.
IE-stop ::- @2 ’TAA’.
IE-stop ::- @2 ’TAG’.
IE-stop ::- @2 ’TGA’.
IE-stop ::- @3 ’TAA’.
IE-stop ::- @3 ’TAG’.
IE-stop ::- @3 ’TGA’.

pyramidine-rich :- 6 of (@-15 ’YYYYYYYYYY’).

EI :- @-3 ’MAGGTRAGT’, not(EI-stop).

IE :- pyramidine-rich, @-3 ’YAGG’,
not(IE-stop).

Class, Id, DNA-sequence

EI,ATRINS-DONOR-521,CCAGCTGCAT...AGCCAGTCTG
EI,ATRINS-DONOR-905,AGACCCGCCG...GTGCCCCCGC
EI,BABAPOE-DONOR-30,GAGGTGAAGG...CACGGGGATG
...
IE,ATRINS-ACCEPTOR-701,TTCAGCGGCC...GCCCTGTGGA
IE,ATRINS-ACCEPTOR-1678,GGACCTGCTC...GGGGGCTCTA
IE,BABAPOE-ACCEPTOR-801,GCGGTTGATT...AAGATGAAGG
...
N,AGMKPNRSB-NEG-1,CAAAAGAACA...CAAGGCTACA
N,AGMORS12A-NEG-181,AGGGAGGTGT...GGGCATGGGG
N,AGMORS9A-NEG-481,TGGTCAATTC...TCTTGCTCTG
...

3190 Records
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Platform for Symbolic Knowledge Injection

Case study II

Class Logic Formulation

EI

class(X̄ , ei)←X−3 = m ∧ X−2 = a ∧ X−1 = g ∧ X+1 = g ∧
X+2 = t ∧ X+3 = a = r ∧ X+4 = a ∧
X+5 = g ∧ X+6 = t ∧ ¬(ei_stop(X̄ ))

ei_stop(X̄ )← X−3 = t ∧ X−2 = a ∧ X−1 = a
ei_stop(X̄ )← X−3 = t ∧ X−2 = a ∧ X−1 = g
ei_stop(X̄ )← X−3 = t ∧ X−2 = g ∧ X−1 = a
ei_stop(X̄ )← X−4 = t ∧ X−3 = a ∧ X−2 = a
ei_stop(X̄ )← X−4 = t ∧ X−3 = a ∧ X−2 = g
ei_stop(X̄ )← X−4 = t ∧ X−3 = g ∧ X−2 = a
ei_stop(X̄ )← X−5 = t ∧ X−4 = a ∧ X−3 = a
ei_stop(X̄ )← X−5 = t ∧ X−4 = a ∧ X−3 = g
ei_stop(X̄ )← X−5 = t ∧ X−4 = g ∧ X−3 = a

IE

class(X̄ , ie)←pyramidine_rich(X̄ ) ∧ ¬(ie_stop(X̄ )) ∧
X−3 = y ∧ X−2 = a ∧ X−1 = g ∧ X+1 = g

pyramidine_rich(X̄ )← 6 ≤ (X−15 = y+ . . .+ X−6 = y)
ie_stop(X̄ )← X+2 = t ∧ X+3 = a ∧ X+4 = a
ie_stop(X̄ )← X+2 = t ∧ X+3 = a ∧ X+4 = g
ie_stop(X̄ )← X+2 = t ∧ X+3 = g ∧ X+4 = a
ie_stop(X̄ )← X+3 = t ∧ X+4 = a ∧ X+5 = a
ie_stop(X̄ )← X+3 = t ∧ X+4 = a ∧ X+5 = g
ie_stop(X̄ )← X+3 = t ∧ X+4 = g ∧ X+5 = a
ie_stop(X̄ )← X+4 = t ∧ X+5 = a ∧ X+6 = a
ie_stop(X̄ )← X+4 = t ∧ X+5 = a ∧ X+6 = g
ie_stop(X̄ )← X+4 = t ∧ X+5 = g ∧ X+6 = a
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Platform for Symbolic Knowledge Injection

Case study III
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Platform for Symbolic Knowledge Injection

Case study IV

0 10 20 30

KINS

DNN
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Backpropagation

PEBLS

ID3

NearestNeighbour

N

0.0 2.5 5.0 7.5 10.0

EI

0.0 2.5 5.0 7.5 10.0 12.5

IE

Error rate

Magnini et al. (DISI, Univ. Bologna) Dive into SKE & SKI XAI project 37 / 52



Platform for Symbolic Knowledge Injection

Knowledge Injection via Lambda Layer I

Knowledge Injection via Lambda Layer (KILL)
A general SKI algorithm that does not impose constrains on the
sub-symbolic predictor to enrich, except being a neural network.

aim → enrich;
predictor → neural network;
how → constraining;
logic → stratified Datalog with negation.
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Lambda Layer II
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Lambda Layer III

Formula C. interpretation Formula C. interpretation
J¬ϕK η(1− JϕK) Jϕ ≤ ψK η(JϕK− JψK)
Jϕ ∧ ψK η(max(JϕK, JψK)) Jclass(X̄ , yi )← ψK JψK∗

Jϕ ∨ ψK η(min(JϕK, JψK)) Jexpr(X̄ )K expr(JX̄ K)
Jϕ = ψK η(|JϕK− JψK|) JtrueK 0
Jϕ ̸= ψK J¬(ϕ = ψ)K JfalseK 1
Jϕ > ψK η(0.5− JϕK + JψK) JX K x
Jϕ ≥ ψK η(JψK− JϕK) JkK k
Jϕ < ψK η(0.5 + JϕK− JψK) Jp(X̄ )K∗∗ Jψ1 ∨ . . . ∨ ψkK

∗ encodes the penalty for the i th neuron
∗∗ assuming predicate p is defined by k clauses of the form:

p(X̄ )← ψ1, . . . , p(X̄ )← ψk
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Lambda Layer IV

Cost function
Whenever the neural network wrongly predicts a class and violates the prior
knowledge a cost proportional to the violation is added. In this way the
output of the network differs more from the expected one and this affects
the back propagation step.

Y ′ = f (Y , cost)
f = Y x (1 + cost)
cost(X ,Y ) = η(p(X )− (1− Y )) (1− Y because 0 means true)
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Lambda Layer V
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Platform for Symbolic Knowledge Injection

Case study I

PHDS: Poker Hand Data Set
Each record represents one poker hand. 5 cards identified by 2 values: suit
and rank. Classes: 10. Training set: 25.010. Test set: 1.000.000.

id S1 R1 S2 R2 S3 R3 S4 R4 S5 R5 class
1 1 10 1 11 1 13 1 12 1 1 9
2 2 11 2 13 2 10 2 12 2 1 9
3 3 12 3 11 3 13 3 10 3 1 9
4 4 10 4 11 4 1 4 13 4 12 9
5 4 1 4 13 4 12 4 11 4 10 9
6 1 2 1 4 1 5 1 3 1 6 8
7 1 9 1 12 1 10 1 11 1 13 8
8 2 1 2 2 2 3 2 4 2 5 8
9 3 5 3 6 3 9 3 7 3 8 8
10 4 1 4 4 4 2 4 3 4 5 8
11 1 1 2 1 3 9 1 5 2 3 1
12 2 6 2 1 4 13 2 4 4 9 0
13 1 10 4 6 1 2 1 1 3 8 0
14 2 13 2 1 4 4 1 5 2 11 0
15 3 8 4 12 3 9 4 2 3 2 1
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Platform for Symbolic Knowledge Injection

Case study II

Some injected rules.

Class Logic Formulation

Pair

class(R1, . . . ,S5, pair)← pair(R1, . . . ,S5)
pair(R1, . . . ,S5)← R1 = R2
pair(R1, . . . ,S5)← R1 = R3
pair(R1, . . . ,S5)← R1 = R4
pair(R1, . . . ,S5)← R1 = R5
pair(R1, . . . ,S5)← R2 = R3
pair(R1, . . . ,S5)← R2 = R4
pair(R1, . . . ,S5)← R2 = R5
pair(R1, . . . ,S5)← R3 = R4
pair(R1, . . . ,S5)← R3 = R5
pair(R1, . . . ,S5)← R4 = R5
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Platform for Symbolic Knowledge Injection

Case study III

Two Pairs

class(R1, . . . ,S5, two)← two(R1, . . . ,S5)
two(R1, . . . , S5)← R1 = R2 ∧ R3 = R4
two(R1, . . . , S5)← R1 = R3 ∧ R2 = R4
two(R1, . . . , S5)← R1 = R4 ∧ R2 = R3
two(R1, . . . , S5)← R1 = R2 ∧ R3 = R5
two(R1, . . . , S5)← R1 = R3 ∧ R3 = R5
two(R1, . . . , S5)← R1 = R5 ∧ R2 = R3
two(R1, . . . , S5)← R1 = R2 ∧ R4 = R5
two(R1, . . . ,S5)← R1 = R4 ∧ R2 = R5
two(R1, . . . ,S5)← R1 = R5 ∧ R2 = R4
two(R1, . . . ,S5)← R1 = R3 ∧ R4 = R5
two(R1, . . . ,S5)← R1 = R4 ∧ R3 = R5
two(R1, . . . ,S5)← R1 = R5 ∧ R3 = R4
two(R1, . . . ,S5)← R2 = R3 ∧ R4 = R5
two(R1, . . . ,S5)← R2 = R4 ∧ R3 = R5
two(R1, . . . ,S5)← R2 = R5 ∧ R3 = R4
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Platform for Symbolic Knowledge Injection

Case study IV

Three of a
Kind

class(R1, . . . ,S5, three)← three(R1, . . . ,S5)
three(R1, . . . , S5)← R1 = R2 ∧ R1 = R3
three(R1, . . . , S5)← R1 = R2 ∧ R1 = R4
three(R1, . . . , S5)← R1 = R2 ∧ R1 = R5
three(R1, . . . , S5)← R1 = R3 ∧ R1 = R4
three(R1, . . . ,S5)← R1 = R3 ∧ R1 = R5
three(R1, . . . ,S5)← R1 = R4 ∧ R1 = R5
three(R1, . . . ,S5)← R2 = R3 ∧ R2 = R4
three(R1, . . . ,S5)← R2 = R3 ∧ R2 = R5
three(R1, . . . ,S5)← R2 = R4 ∧ R2 = R5
three(R1, . . . ,S5)← R3 = R4 ∧ R3 = R5

Flush class(R1, . . . ,S5, flush)← flush(R1, . . . , S5)
flush(R1, . . . ,S5)← S1 = S2 ∧ S1 = S3 ∧ S1 = S4 ∧ S1 = S5

Four of a
Kind

class(R1, . . . ,S5, four)← four(R1, . . . ,S5)
four(R1, . . . , S5)← R1 = R2 ∧ R1 = R3 ∧ R1 = R4
four(R1, . . . ,S5)← R1 = R2 ∧ R1 = R3 ∧ R1 = R5
four(R1, . . . ,S5)← R1 = R2 ∧ R1 = R4 ∧ R1 = R5
four(R1, . . . ,S5)← R1 = R3 ∧ R1 = R4 ∧ R1 = R5
four(R1, . . . ,S5)← R2 = R3 ∧ R2 = R4 ∧ R2 = R5
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Platform for Symbolic Knowledge Injection

Case study V

Setup
neural network: 3-layers fully connected (128, 128, 10 neurons per
layer respectively) with rectified linear unit (ReLU) as activation
function, except for the last layer (softmax);
knowledge: see previous slides;
categorical cross-entropy as loss function
training: Adams as optimiser for 100 epochs (with early stop
conditions);
experiment repeated 30 times to have a statistic significant population.
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Platform for Symbolic Knowledge Injection

Case study VI

Metric Classic KILL Metric Classic KILL
Accuracy 0.962 0.978 Acc. Straight 0.415 0.509
Macro-F1 0.512 0.538 Acc. Flush 0.002 0.002
Weighted-F1 0.96 0.977 Acc. Full 0.628 0.69
Acc. Nothing 0.977 0.989 Acc. Four 0.186 0.19
Acc. Pair 0.968 0.985 Acc. Straight F. 0.003 0
Acc. Two Pairs 0.867 0.914 Acc. Royal F. 0 0
Acc. Three 0.913 0.922
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Platform for Symbolic Knowledge Injection

Case study VII
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Open literature research lines

SKE & SKI
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Open literature research lines

Multi-Agent Systems

agent to agent explanation [Omicini, 2020]

→ SKE + SKI + explanation;
logic as lingua franca for communication between heterogeneous
entities;
knowledge sharing and knowledge exploitation among agents;
symbolic techniques integrated with sub-symbolic ones
→ representing and manipulating cognitive processes and their results.
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