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What

PSyKl: a (Python) platform for symbolic knowledge injection

/_\’ GitHub Repository

https://github.com/psykei/psyki-python

(please star us :)

CED Main papers
e [Magnini et al., 2022b]

B
&%
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https://github.com/psykei/psyki-python

Why SKI?

There are several benefits:
@ prevent the predictor to become a black-box!;
@ reduce learning time;
@ reduce the data size needed for training;
@ improve predictor’s accuracy;

@ build a predictor that behave as a logic engine.

G. Ciatto et al. (UniBO) SKI via PSyKI PRIMA 2022

4/54



Background
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Background

Symbolic Knowledge Injection |

Key insights:
@ Altering ML predictors. ..
@ ...to make they comply to user-provided knowledge. ..

@ ...which is represented in symbolic form
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Background

Symbolic Knowledge Injection Il

We define SKI as:

any algorithmic procedure affecting how sub-symbolic predictors draw their
inferences in such a way that predictions are either computed as a function
of, or made consistent with, some given symbolic knowledge*.

* a wide definition that includes the vast majority of the works surveyed in
[Besold et al., 2017, Xie et al., 2019, Calegari et al., 2020].
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Background

Symbolic Knowledge Injection IlI

General workflow:

(Symbolic) (Sub-symbolic)
Knowledge Predictor
1 3
Parsing Injection
(Visitable) Predictor with
Knowledge exploitable knowledge
2 4
Fuzzification Training
(Sub-symbolic) I (Trained)
Knowledge Predictor
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Background

What does ‘symbolic’ actually mean? |

According to [van Gelder, 1990], symbolic representations of knowledge
@ involves a set of symbols,
@ which can be combined (e.g., concatenated) in (possibly) infinitely
many ways,
o following precise syntactical rules, and

@ where both elementary symbols and any admissible combination of
them can be assigned with meaning
ie each symbol can be mapped into some entity from the domain at hand.

Notable example j

e formal logic
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Background

What does ‘symbolic’ actually mean? |

Opposite notion: distributed representations

@ where symbols alone have no meaning
@ unless it is considered along with its neighbourhood
ie any other symbol which is close (according to some notion of closeness)
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Taxonomy of SKI methods |

Input Knowledge

[ Strategy ] [Targez Pred\cmr]

Kernel Machines

(oernowetoe | - (o rormue | (* reactor | [somietoe | [“utea | | Ciarciuns ] [ symoonc | [ seain
Structuring Embedding Learning Knowledge Support
Manipulation (Enrich)

Neural Networks

GNN
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Taxonomy of SKI methods Il

@ input knowledge how is the knowledge to-be-injected represented?
e commonly, some sub-set of first-order logic (FOL)

@ target predictor which predictors can knowledge be injected into?
e mostly, neural networks

@ strategy how does injection actually work?

o guided learning the input knowledge is used to guide the training
process

e structuring the internal composition of the predictor is (re-)structured
to reflect the input knowledge

e embedding the input knowledge is converted into numeric array form

@ purpose why is knowledge injected in the first place?

o knowledge manipulation improve / extend / reason about symbol
knowledge—subsymbolically

o learning support improve the sub-symbolic predictor (e.g. speed, size,
etc.)
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Background Focus on input knowledge
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Focus on input knowledge
About Logic |

How to represent knowledge?

First-Order Logic

@ expressiveness—tractability
trade-off
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(eakplp e
About Logic Il

In practice, virtually all SKI algorithms deal with:
o datalog;
@ description logics (a.k.a. knowledge graph, KG);
@ propositional logic (PL).
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skl plbneiles
First Order Logic |

@ FOL is extremely flexible and expressive
e variables, quantifiers, structured terms, negation, logic connectives

@ one can use recursion to define recursive structures;
e possibly, intensionally—i.e. without extensively describing everything

@ maybe too “powerful” for canonical NN
o most NN are essentially DAG
e training via backpropagation requires no cycles
— recursion not supported
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skl plbneiles
First Order Logic Il

Example of FOL knowledge base (Peano numbers)

natural(zero)
VX : natural(X) — natural(successor0f(varX))
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Background Focus on input knowledge

Horn Clauses (= Prolog) |

@ sub-set of FOL with:
e implicit quantifiers
o limited set of logic connectives

@ still supports recursion

@ nice expressiveness—tractability trade-off
e often exploited to design/realise automatic reasoning
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Background Focus on input knowledge

Horn Clauses (= Prolog) I

Example of Horn clauses (Peano numbers)

natural(zero)
natural(successor0f(varX)) < natural(X)
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skl plbneiles
Datalog |

@ sub-set of Horn clauses with no recursion

e good for SKI!

Peano numbers in Datalog

@ cannot be represented!
o (as they require recursion)
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skl plbneiles
Description Logics (=~ Knowledge Graphs) |

@ Very restricted subset of FOL
e only constants, variables and n-ary predicates with n < 2;

@ Everything is represented via collections of triplets of the form:

(a f b) or f(a,b)
where a, b are entities, and f is a (binary) relationship

@ essentially, directed graph:
e nodes (i.e. entities) represent individuals,

o edges (i.e. relationships) represent relations among individuals;
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Background Focus on input knowledge

Description Logics (=~ Knowledge Graphs) Il

(AlfredHitchcock, DirectorOf, Psycho)

| T

Sir Alfred Joseph Hitchcock Psycho is a psychological horrol
(13 August 1899 - 29 April 1980) film directed and produced by
was an English film director and Alfred Hitchcock, and written by
producer, ... Joseph Stefano, ...

G. Ciatto et al. (UniBO) SKI via PSyKI PRIMA 2022 20 /54



Background Focus on input knowledge

Propositional Logic |

@ The simplest subset of FOL
e no quantifiers, no terms, no n-ary predicates with n > 0
o essentially, just Boolean algebra

@ low expressiveness, but easy to work with.
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Background Focus on input knowledge

Propositional Logic Il

Example

big petal N average sepal — virginica.
big petal N\ —average sepal — versicolor.
big petal — setosa.
average sepal = (3 < SepalWidth < 5)
big _petal = (PetalLength > 3)
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Background Focus on strategy

Next in Line. ..
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FEDE I
Strategy 1: Guided Learning |

If wow start » -
Tu‘?ien{' descent A

@ learning is essentially an optimizionation process
@ ...often performed via gradient descent
ie minimising a loss function
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FEDE I
Strategy 1: Guided Learning Il

SKI via Guided Learning

@ Input knowledge is converted into a cost factor
ie the more the knowledge is violated, the higher the cost
@ The loss function is altered to include that cost factor
eg as a simple additive regularisation factor

© The predictor is then trained as usual

— Training minimises both the predictors’ error and inconsistency w.r.t.
knowledge
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FEDE I
Strategy 1: Guided Learning Il

\ likes (john, jane). H l

: likes(jane, john). :

1 likes(jack, jane). H
- likes(X, Y), likes(Y,
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FEDE I
Strategy 2: Structuring |

SKI via Guided Learning

@ The predictor’s inner architecture is shaped to"mimic” the knowledge

@ Shaping is predictor-dependent
eg for neural networks, this means creating ad-hoc layers

@ where small groups of neurons are used to compute pieces of a formula

— The predictor directly exploits the knowledge during inference
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Background Focus on strategy

Strategy 2: Structuring |l

1 likes (john, jane). H

!likes(jane, john). [ >
1 likes(jack, jane). H

! friends(X, Y) - ikes(X, Y), likes(Y, X).
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FEDE I
Strategy 2: Structuring Il

Example:

A+ BANCA-D.
A+~ ENF. <~
B + true.
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FEDE I
Strategy 3: Embedding |

SKI via Guided Learning

o Input knowledge is converted into numeric tensor(s)

@ These are used as the training set for an ordinary learning process

— The predictor is trained and used ‘as usual’

1likes (john, jane). H

1likes(jane, john). '

1 likes(jack, jane). S Dataset
1 friendis ), .

: R
L >@4’27U1WNMHM
| A
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FEDE I
Strategy 3: Embedding Il

Example: knowledge graph embedding
@ entities and relations are embedded into continuos vector spaces;

e scoring function f,(h, t) defined on each fact (h, r, t) to measure its
plausibility;

Entity and Relation Space Entity and Relation Space Entity Space Relation Space of r

(a) TransE. (b) TransH. () TransR.
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FEDE I
Strategy 3: Embedding Il

fr(ht)

(a) RESCAL (b) DistMult. () HolE.

?::f.-.

w

M{, M3 b, M!LMZb, MM M?
\
©000 €000 0000
h r t h r t
(a) SME. (b) NTN. (<) MLP.
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Background Example algorithms

Next in Line. ..
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Background Example algorithms

Knowledge Injection via Network Structuring

purpose — learning support;

target predictor — neural networks;
strategy — structuring;
input logic — stratified Datalog with negation.
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Background Example algorithms

Knowledge Injection via Network Structuring I
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Background Example algorithms

Knowledge Injection via Network Structuring [

Formula ‘ C. interpretation H Formula ‘ C. interpretation
[-¢] {1 —[el} | [6 < ¢] n{min{1,1— [¢] + [¢]}}
[¢ A Y] n{min{[¢], [¥]}} || [¢ < ¢] n{min{1,1—[[¢] - [¢]]}}
[V 4] n{max{[o], [¥[}} || Texpr(X)] expr([X])
[¢ =] {[~(¢ # )]} || [true] 1
[¢ # ] n{lle] = [¥11} | [false] 0
[¢ > ¢] n{max{0,[¢] — [¢]}} || [X] X
[¢=v] | n{l(6>v)Vv(e=v)}| [] k
[¢ <] n{max{0, [¢'] = [¢]}} || [p(X)]*" [v1 V... V]
[o<v] | n{l(e <) V(e=1v)]} | [class(X,yi) < ¢] [1*
[¢ = 4] | n{min{1,1 = [¥] + [¢]}}

* encodes the value for the ith output

** assuming p is defined by k clauses of the form:

P(X)<—1/117 LR p()_()<_wk
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Background Example algorithms

Knowledge Injection via Network Structuring \Y,
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Background Example algorithms

Knowledge Injection via Lambda Layer

purpose — learning support;

target predictor — neural networks;
strategy — guided learning;
input logic — stratified Datalog with negation.
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Background Example algorithms

Knowledge Injection via Lambda Layer I

NN during |nference
. l“_" I'__ .
|
1
|___J I___

NN during training

i =
: 1 :_)i

- Y + penalty

KB

w 9
w
1
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Background Example algorithms

Knowledge Injection via Lambda Layer 11

Formula \ C. interpretation H Formula \ C. interpretation
[-¢] n(t—[¢]) | o <] n(le] — [¥])
[ony] | n(max([¢], [¥])) | [class(X,yi) < ] []*
[¢ V4] n(min([¢], [¢])) || [expr(X)] expr([X])
[¢ =] n(lle] — [¥11) | [true] 0
[¢ # ¢] [(¢ =)] | [false] 1
[¢ > 4] | (0.5 —[¢] +[¥]) || [X] x
l¢ > ] n([¥] - [¢]) || [x] _ k
[ <] | n(0.5+[g] — [¥]) || [p(X)]™ [1 V... V]

* encodes the penalty for the it neuron

** assuming predicate p is defined by k clauses of the form:
p(X) 91, ...y p(X) + Py
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PSyKI

Next in Line. ..

© PSyKI
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Overall Design |

I

I
KILL | |KINS | | *

I

I

— LV P
- -
Knowledge i
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Overall Design Il

Key components:

injector: any entity capable of injecting knowledge into a sub-symbolic
predictor

e it simply alters/reconfigures the predictor. . .
@ ...which should be trained after the injector operates

predictor: the partially-trained classifier/regressor where knowledge
should be injected into

@ untrained is ok too

formula: formal representation of the symbolic knowledge to be
injected

@ e.g. in Prolog or FOL syntax
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Overall Design Il

Unified API for SKI
@ 1 interface for Injector, several implementations
eg KILL, KINS, etc.
@ 1 interface for Formula, several implementations
eg FOL, Datalog, etc.

o 1 interface for Predictor, several implementations
eg NN, kNN, DT
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API Design |

ski
Injector
® - @
o predictor: Predictor
- - —
o inject(formulae: List[Formula]): Predictor

[@networkcomposer| [ @ Fuzzifier 1‘ [@tambdatayer|

Eﬁ
[@Sllunu,' gFuzzif } [@Cu” trainingFuzzif J

TN
[Gaos\ |

o visit(formulae: List[Formulal): Any

grammar\
% [@swwetwurksunder} [@ Godel} [@ Lukaswew.cz} [@ DatalugFurmu\a}
: :
E E

L | 1 | |
C ) J & ) )
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API Design Il

@ The user only needs to know:

o the particular injector to exploit (and its paramenters)
o the particular parser to decode logic rules
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@ Tutorial
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Tutorial

Two ways to reproduce the tutorial:

GitHub Repository (long way)
https://github.com/pikalab-unibo/prima-tutorial-2022

DockerHub Images (quick way)

https://hub.docker.com/r/pikalab/prima-tutorial-2022/tags
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) GRS
How to set the tutorial up from GitHub |

Enviromental pre-requisites
@ Python 3.9.x
e IDK > 11

o Git

©Q git clone
https://github.com/pikalab-unibo/prima-tutorial-2022

@ cd prima-tutorial-2022
© pip install -r requirements.txt

© jupyter notebook
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) GRS
How to set the tutorial up from GitHub Il

@ Your browser should automatically open showing the following page:

" Jupyter Qut Logout

Fles | Ruming  Clstors

soo0om@ ¢

o 259k

et 474KB

358
w078

028

P
P
P
P
refa 6208
P
P
e
P
4

Oooooao

32348
143k

O open the psyki-tutorial.ipynb notebook
@ listen to the speaker presenting the tutorial =)
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Next in Line. ..

@ Tutorial
@ From DockerHub
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How to set the tutorial up via Docker |

Enviromental pre-requisites
@ Docker

o
DOCKER_IMAGE={

pikalab/prima-tutorial-2022:latest
pikalab/prima-tutorial-2022:latest-apple-ml

@ docker pull $DOCKER_IMAGE
e in case of lacking Internet access:

docker image load -i /path/to/local/image/file.tar

© docker run -it -rm -name prima-tutorial-ske-ski -p
8888:8888 $DOCKER_IMAGE

@ Some textual output such as the following one should appear:
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How to set the tutorial up via Docker Il

1 [T 09:51:46.940 NotebookApp] Writing notebook server cookie secret to /root/.local/
share/jupyter/runtime/notebook_cookie_secret

2 [I 09:51:47.159 NotebookApp] Serving notebooks from local directory: /mnotebook

3 [I 09:51:47.159 NotebookApp] Jupyter Notebook 6.5.2 is running at:

4 [I 09:51:47.159 NotebookAppl] http://cb0a3641caf0:8888/7?token=2
b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd

5 [I 09:51:47.159 NotebookApp] or http://127.0.0.1:8888/7?token=2
b02d31671c6ad9e9cfB8e036eb6962d3592af9cfdd5e60bd

6 [I 09:51:47.160 NotebookApp] Use Control-C to stop this server and shut down all
kernels (twice to skip confirmation).

7 [C 09:51:47.162 NotebookApp]

8

9 To access the notebook, open this file in a browser:

10 file:///root/.local/share/jupyter/runtime/nbserver -7-open.html
11 Or copy and paste one of these URLs:

12 http://cb0a3641caf0:8888/7token=2

b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
13 or http://127.0.0.1:8888/7?token=2b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e¢60bd
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How to set the tutorial up via Docker Il

@ Copy-paste into your browser any link of the form:
http://cb0a3641caf0:8888/7token=TOKEN

@ Your browser should now be showing the following page:

~ jupyter

@ open the psyki-tutorial.ipynb notebook
@ listen to the speaker presenting the tutorial =)
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Discussion

Next in Line. ..

© Discussion
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Notable Remarks

@ knowledge bases should express relations about input—output pairs
@ embedding implies extensional representation of knowledge
e guided learning, and structuring support intensional knowledge

@ propositional knowledge implies binarising the 1/0O spaces
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Discussion

Current Limitations

support for regression is preliminary
recursive data structures are not supported

recursive clauses are not supported

extensional representation cost storage
e not always possible

@ guided learning works poorly with lacking data
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Discussion

Future research activities

o foundational: address recursion
@ practical: address regression
@ is SKI possible outside the NN domain?
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