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What

PSyKE: a (Python) platform for symbolic knowledge extraction

GitHub Repository

https://github. com/psykel/psyke python

(please star us :)
‘.:
Main papers

@ [Sabbatini et al., 2021a]
@ [Sabbatini et al., 2022b]
@ [Sabbatini et al., 2022a]
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https://github.com/psykei/psyke-python

Why

@ Pervasive adoption of sub-symbolic, ML-based predictors in Al

@ Their opacity brings drawbacks

o difficulty in understanding what a black-box has learned from data

e.g. “snowy background” problem

o difficulty in spotting “bugs” in what a numeric predictor has learned
@ because such knowledge is not explicitly represented

o several blatant failures of ML-based systems reported so far

e.g. black people classified as gorillas
e.g. wolves classified because of snowy background
e.g. unfair decisions in automated legal systems

. . v . .
e recognised citizens' right to meaningful explanations
@ about the logic behind automated decision making
e.g. in General Data Protection Regulation (GDPR)

— Need to inspect and understand how ML predictors operate
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Background

Symbolic Knowledge Extraction |

Key insights:

@ Explaining supervised ML predictors. . .

@ ...by search of a surrogate interpretable model. ..

; ; @ ...consisting of symbolic knowledge
I
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Symbolic Knowledge Extraction Il

Definition

Any algorithmic procedure accepting trained sub-symbolic predictors as
input and producing symbolic knowledge as output, in such a way that the
extracted knowledge reflects the behaviour of the predictor with high
fidelity.
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Symbolic Knowledge Extraction Il

Example:

Class = setosa < PetalWidth < 1.0.

Class = versicolor < PetallLength > 4.9
A SepalWidth € [2.9, 3.2].
Class = versicolor < PetalWidth > 1.6.

Class = virginica <+ SepalWidth < 2.9.

Class = virginica <
SepallLength € [5.4, 6.3].
Error: 0.346668 Steps: 26926 Class = virginica <

PetalWidth € [1.0, 1.6].
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Background

What does ‘symbolic’ actually mean? |

According to [van Gelder, 1990], symbolic representations of knowledge
@ involves a set of symbols,
@ which can be combined (e.g., concatenated) in (possibly) infinitely
many ways,
o following precise syntactical rules, and

@ where both elementary symbols and any admissible combination of
them can be assigned with meaning
ie each symbol can be mapped into some entity from the domain at hand.

Notable example j

e formal logic

G. Ciatto et al. (UniBO, UniURB) SKE via PSyKE PRIMA 2022 8/51



Background

What does ‘symbolic’ actually mean? |

Opposite notion: distributed representations

@ where symbols alone have no meaning
@ unless it is considered along with its neighbourhood
ie any other symbol which is close (according to some notion of closeness)
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Plenty of SKE methods from the literature |

Table: Summary of the knowledge-extraction algorithms. Symbol * means that the related
dimension of the algorithm is not bounded. Symbol { means that the output is a power law.

#  Method Translucency Task Input Expressiveness Shape

1 [Breiman et al., 1984] P C+R C+D P DT
27 "[Quinfan, 1986] T~ " " " " TP T T T 7 cC" "o~ P T T DT~
" 37 7[Saito and Nakano, 1988] © ~ ~ P~ =~~~ [ I P C~ -
" 4" "[Clark and Niblett, 1989] ~ ~ ~ P~~~ C~"C4D T T T P L~

5  [Masuoka et al., 1990] D (NN) C C F L
"6 [Hayashi, 1990] =~~~ T © D(NNy " "C~ "B~ 777 F~ "~ A%
" 77 T[Towell and Shaviik, 1991]° "D(NN) ~ ~ "C~ "D ~ " T T MN~ ~ T D
"8 "[Berenji, 1991] ~ ~ T T © D(NNy - "C~ "~ C ™77 F~ "~ N
" 97 "[Brunk and Pazzani, 1991] © " P~ ~ T T © C~ G+ T T T 7 P ASNY [z
" 10 "[Murphy and Pazzani, 1991] ~ P~ =~~~ C” "D T T T MNT T T DT ~
" 11 T[Horikawaetal,1992] ~ " "D(NN) =~ "C T C T T " F sy =/ 0] F
" 127 T[Tresp etal, 1092] T T © D(NNy "~ "R~ °C "7 P I/A¢
" 13 “[Towell and Shaviik, 1993 "D(NN) ~ ~ "C ™~ D ~ ~ " " ° P —
" 14 T[Thrun,1993] ~ ~ ~ 7 T 7 © D(NNy ~ " "C ™~ 7C 7T PFMN ~ " " TLC
"15 "[Cohen,1993] T T~ " " T TP T T 77 C~"C+D T T 7 PO\ Z\ Y
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Plenty of SKE methods from the literature Il

16 [Quinian, 1993] P C C+D P DT
TI7 [Fu 1994 T T T T T T T DINNy - "C "D T T P L~
" 18° [Halgamuge and Glesner, 904D (NN) ~ ~ "C ~ ~ "C ~ ~ ~ 7 © F- - L™~
" 19 [Mitra, 1994 T T T T T T 7 D(NNy) ~~ C~ "C¢D —~~ F- - L™~
" 20 "[Craven and Shavlik, 1994] =~ P~~~ T~ C™ BT P+MN =~ " TLC
" 21" "[Fiirnkranz and Widmer, 1994] P~~~ "~ c "o~~~ P L™~
22" "[Sestito and Dillon, 1994] ~ ~ " P~ " " " c ¢ 7 P L™~

23 [Andrews and Geva, 1995] D (NN) C C+D P L
" 24~ “[Matthews and Jagielska, 1995p (NN) ~ ~ "C ~~ B~ T T " © F-- - C™—~
" 25 T[Cohen,1995] T~ " " """ P~ "7 (N P L\
"26 [Popetal,1994] T~ """ " P """ c- "B "~ P L™~
" 27 [Setionoand Liu,1996]  ~ "D{(NN) ~ " "C " B T T T~ P N
" 28 T[Tickleetal,1996] ~ ~~~ " P~~~ c- "B "~ Y —\~ / L] s
" 29 "[Yuan and Zhuang,1996] _ ~ ~ P~ "~ c "o~~~ F- b
"~ 30 [Craven and Shavlik, 1996] ~ ~ P~~~ "~ C- BT P+MN =~ T DT~
" 31 [Hongandlee, 1996] ~  ~ P~~~ c_ ¢ "7 FIana 2zl s
" 32" [Setiono and Liu, 1997 " 'D(NN3) ~ ~ " C ~ " C+D_ T T T o] = T~} C— -
" 337 [Setiono, 1997] ~ ~ T T ° DNNy ~~"C~ "D~ """ PlEal\~l iljas
" 34 "[Nauckand Kruse, 1997] ~ "D{(NN) ~ " "C "~ D T~ "~ A Ty
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Plenty of SKE methods from the literature Il

35 [Saito and Nakano, 1997] D (NN) R C t i
"36 [Benitezetal,1997] ° ~ "D{(NN) T T C+R = C =TT 7 F~ L™~
" 37 Tlishibuchietal, 1997] ~ " " " P T " 7 c- ¢ 77 F- C~ -
" 38 [Tahaand Ghosh, 1999] " "D(NN) ~ ~ "C~~ C T~ "~ P C~ -
"39 T[Tahaand Ghosh,1999] " "D(NN) =~ "C " C =~~~ 7 P C~ -
" 40 “[Krishnanetal,1999b)" " "D(NN) =~ "C "B =~ 7 P L~
" 41 [Nauck and Kruse, 1999] ~ "D(NN) ~~ "R~ ~ D~~~ 7 F~ L~
" 42" "[Taha and Ghosh, 1999] ~ =~ " P~~~ c "B 7 P C~ -
" 43" "[Krishnanetal, 19992 " TP~ T T T 7 c- ¢~ P DT~
AT T T T T T T T T T T T P T T TCHR TC+D T T T T P DT ~
" 45 T[Hongand Chen,1999] " =~ TP T T T 7 c~- ¢ 77 F~ L™~

46 [Setiono, 2000] D (NN) C B MN L
T 47 [Tsukimoto, 2000] ~ ~ ~ ~ © D(NN) ~ " "C~"C+D ~ ~ 7 P A5N7 [
"48 [Kimand Lee, 2000~~~ D(NN4) =~ "C~ "C+D T T © P~ T DT~
" 49 "[Setiono and Leow, 2000 T D (NN) ~ = "R~ " C4+D = P+MN{4O =~ T DT
"B50 [Zhouetal, 20000 """ P " 7 C~ "C+D T 77 P~ A7
"51 [Hongand Chen,2000)  ~ ~ " P~~~ c ¢ 777 = 8 i
" 52" “[Sato and Tsukimoto, 2001] B (NN3) ~~ "R~ "&b T T T~ = el bt
" 53" "[Parpinellietal, 2001] ~ =~ " P~ T~ C~C+D T T 7 PE=n\ 2\ Y
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Plenty of SKE methods from the literature IV

54  [Castillo et al., 2001] P C+R C+D F L
" 55 "[Saito and Nakano, 2002] ~ "D (NN) ~ = "R~ ~C+D =~~~ P L~
"56 [Setionoetal,2002)  © ~ D(NN3) ~ R ~C+D =~ P L~
"57 T[liuetal, 2002 " " " " P 7 T P L~
58 [Boz2002] T " TP T 7 N P~ DT~
" 59 " [Markowska-Kaczmar and Trelak,R003] "~ "C ~ " C+D ~ ~  © F- C~ -
"60 [Zhouetal,2003] """ P "7 C~ "C+D T T 7 P C~ -
" 61 [Setiono and Thong, 2004] D (NN3) =~ "R~ ~C+D ~ =~ P L~
T 62 [Fuetal,2004] ~ T T D(SVM) "~ " C~ "C+Db ~ " "~ P C™ -
" 63 [Markowska-Kaczmar and Chumiepa, 2004] " C ~ ~C+D ~ =~ ~ P B
" 64 [RabuRaletal., 2004~~~ " P~ C”~ G+ T T T 7 P L™~
"65 [Chen, 2004 ~ TP T 7 c~ ¢ 77 P 2N
"66 [Liuetal, 2004 " " P T 7 T P ASN U&=
" 67 [Browneetal, 2004~~~ TP 7 C 4D~ T P+MN " T T DT

68 [Zhang et al., 2005] D (SVM) C C P L
" 69 [Barakat and Diederich, 2008]D (SVM) = ~ C+R ~ ¥ ~ T " © o =l WA
" 70" “[Fung et al, 2008] ~ ~ ~ D (SVMFLC) " €T ¢ T 2~ = i
" 71 [Chavesetal,2005]  ~~ D((SVM) ~ C " C " 7 Flaaa\~l /322
" 727 "[Torres and Rocco, 2005] ~ ~ ~ P~~~ T C~ 4D T T PF+MN T T T DT
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Plenty of SKE methods from the literature V

73 [Etchells and G., 2006] P C C+D P L
" 74 T[Heetal,2006] " P T 7 C”~"C¥D T T T P~ T DT~
" 75 T[Huysmans et al., 2006] P~~~ R~ ¢~~~ 77 P L -
" 76 "[Bader et al., 2007] ~ ~ DINNy ~~ " C~ "B~ 777 P L~
" 77 T[Schetininet al,2007] T~ D(DTE) R~ C 7 P~ T DT~
" 78 "[Chenetal,2007] =~ DGSVM)  ~"C~~"C """ P L~
" 79 " [Barakat and Bradley, 2007] D (SVM) ~ = " C ~ "C4D ~ "~ ~ P L~
" 80 [Saad and Wunsch 11,2007~ ~ P~~~ T~ C~ "C¥D T T T T o~ "7 L~
" 81 "[Martensetal, 2007] " P~~~ C~ " CsD T T T T P C— -
" 82 T[Nufiez et al, 2008] ~ T D(SVM) "~ "C~~ "¢~~~ P+O ~ T T L\
" 83 T[Setionoetal,2008] " P~~~ C~"C4D T T TPFO T T T T N
" 84 "[Odajimaetal,2008] ~ ~ " P~~~ [ » P [N
"85 [Konigetal,2008] TP T C +R " C+D T T T 7 F DT~
" 86 [Bader, 2009] T © DINNy ~~"C~ "B~ 777 P [P
" 87 [Martensetal, 2000~ D(SVM) T C T ¥ T T T 77 ¥ S * A

88  [Lehmann et al., 2010] P C B P L
" 89 _[Kuéagta_a_nd_I(_a%iFv:ﬂa\_/aT(u?ngr,_Bﬁli] T TC T TCfD T T T T P L~
" 90 [Sethietal,2012] "~ " P "~ C~"C¥D T T T T Pl = TA™

91 [Zilke et al., 2016] D (NN) R C+D P DT
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Plenty of SKE methods from the literature VI

92 [Chan and Chan, 2017] D (NN) R C P L
" 93" "[Yedjour and Benyettou, 2018] P~~~ c BT 7 P C~ -
" 94 "[Chanand Chan, 2020~ "D(NN) ~~ "R~ ~C ~~ 7 P L™~
95 [Wang et al., 2020] D (DTE) C C P L
" 96 [Sabbatinietal,2021b] © ~ T P~ T T T R~ ¢~~~ 77 P C~~

G. Ciatto et al. (UniBO, UniURB) SKE via PSyKE PRIMA 2022 15 /51



Transluciency
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Taxonomy of SKE methods Il

target Al task for the predictor undergoing extraction

classification i.e., finite amount of possible predictions
regression i.e., continuous predictions

translucency what kind of ML predictor does the SKE method support?

pedagogical: any supervised predictor

decompositional: a particular sort of ML predictor (e.g. NN,
SVM, DT)

input data supported by the predictor undergoing extraction
binary: X = {0,1}"
discrete: X € {x1,...,x,}"
continuous: X C R”
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Taxonomy of SKE methods Ill

shape of the extracted knowledge

rule list: i.e. ordered sequences of if-then-else rules
decision tree: hierarchical set of if-then-else rules involving a
comparison among a variable and a constant
decision table: 2D tables summarising decisions for each
possible assignment of variables
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Taxonomy of SKE methods IV

expressiveness of the extracted knowledge
propositional: boolean statements + logic connectives
@ there including arithmetic comparisons
among variables and constants
fuzzy: hierarchical set of if-then-else rules involving a
comparison among a variable and a constant
oblique: boolean statements + logic connectives +
arithmetic comparisons
M-of-N: any of the above + statements like

m—of —{¢1,...,0n}

G. Ciatto et al. (UniBO, UniURB) SKE via PSyKE PRIMA 2022 19 /51



Examples of methods and their classification — CART |

CART :[Breiman et 2l 19841 c|agsification and regression trees

o translucency: pedagogical
target Al task: classification OR regression
input data: binary OR discrete OR continuous

shape: decision tree

expressiveness: propositional
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Background

Examples of methods and their classification — CART I

* absent * present

es (yes] start>=8.52 51
start >= 14'?
age < 4. 8‘?

age >- 9.27

5% 17/v g/w 23%

Figure: An example decision tree estimating the probability of kyphosis after spinal surgery,
given the age of the patient and the vertebra at which surgery was started

[Wikipedia contributors, 2021]. Notice that all decision trees subtend a partition of the input
space, and that those trees themselves provide intelligible representations of how predictions are

attained.

36/» 1
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Examples of methods and their classification — CART Il

Using CART for SKE
© generate a ‘fake’ dataset by feeding the predictor undergoing SKE

@ train a decision tree on the ‘fake’ dataset

© compute fidelity and repeat step 2 until satisfied

Q [opt.] rewrite the tree as a list of rules
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Background

Examples of methods and their classification — GridEx |

GridEx:[sabbatini et al., 202181 grid extractor

o translucency: pedagogical

target Al task: regression
input data: continuous

shape: rule list

expressiveness: propositional
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Background

Examples of methods and their classification — GridEx |1

Figure: Example of GridEx's hyper-cube partitioning (merging step not reported)

(a) (b) Iteration (c) Iteration (d) Iteration
Surrounding 1(p1=2) 2 (p2 = 3). 3 (ps = 2).
cube
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Background

Examples of methods and their classification — GridEx |

Using GridEx for SKE
© partition the input space into pj hypercubes

e evenly splitting the n dimensions into p; bins
@ partition each non empty-region into pj hypercubes
e evenly splitting the n dimensions into p, bins
© repeat the splitting arbitrarily
@ assign a prediction with each non-empty partition (e.g. average value)
@ write an if-then rule for each non-empty partition:

e if: expressions delimiting the partition
e then: prediction of that partition
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Examples of methods and their classification — REFANN |

REFANN:[5etiene et 2l 20021 pyjle extraction from function approximating

e translucency: decompositional (3-layered NN)

target Al task: regression

°
@ input data: continuous OR discrete
@ shape: rule list

°

expressiveness: propositional
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Examples of methods and their classification — REFANN |l

Hidden Layer

Input Layer Q

\

Input 3 Q/

Figure: An example 3-layered multi-layer perceptron (MLP)
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Examples of methods and their classification — REFANN [lI

Using REFANN for SKE

@ prune the network's hidden units and input neurons

@ approximate the hidden units’ activation function with a 2-steps-wise
linear function

© approximate the output units' activation function with a 3- or
5-step-wise linear function

@ rewrite each output neuron as a linear combination of the input neuron

© rewrite the linear combinations as rules

o hence attaining a list of rules
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Examples of methods and their classification — REFANN [V

Yy
h(xm) ......................... ——’.
Xol-meeeeee -
/.
7.
/
’
y
/
/
/
: x
0] X0 Xm

Figure: (from [Setiono et al., 2002]) The tanh(x) function (solid curve) for x € [0, xm] is
approximated by a 2-piece linear function (dashed lines)
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Examples of methods and their classification — REFANN V

y

B | ooeoreeeeeenoneo
Yo a2 :
JC
Xot-/ :
I .
: : : x

Oxy, x4 X, Xnm

Figure: (from [Setiono et al., 2002]) The tanh(x) function (solid curve) for x € [0, xm] is
approximated by a 3-piece linear function (dashed lines)
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PSyKE

Next in Line. ..

© PSyKE
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Overall Design |

Extractor

O o

Prolog Syntax AN
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Overall Design Il

Key components:
extractor: any entity capable of extracting symbolic knowledge out of
sub-symbolic predictors

@ possibly, in the form of logic knowledge bases
@ possibly, leveraging upon the dataset the predictor was
trained upon ...

e possibly, after a discretization step
@ ...and its schema

predictor: some trained classifier/regressor from which knowledge
should be extracted

discretiser: any component capable to turn continuous datasets into
discrete form, following some strategy

logic theory: outcome of the extraction process
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Overall Design Il

Unified API for SKE

o 1 interface for Extractor, several implementations
eg CART, REAL, GridEx

o 1 interface for Discretiser, several implementations

o 1 interface for Predictor, several implementations
eg NN, kNN, DT
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PSyKE

API Design |

Psyke\

@ Extractor

o predictor: P
o discretization: Discretization

o extract(DataFrame): Theory
o predict(DataFrame): R

b\

output of input of wraps

Underlying Symbdlic AI library\  [Underlyihg ML library\
¥

@ Theory

*
>—

Rule DataFrame Predictor
©) ©) ©)
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API Design ||

General assumptions:
e underlying ML library (e.g. Scikit-Learn ), providing:
DataFrame a container of tabular data

Predictor<R> a computational entity which can be trained (a.k.a.
fitted) against a DataFrame and used to draw
predictions of type R;

Classifier<R> a particular case of predictor where R represents a
type having a finite amount of admissible values;

Regressor<R> a particular case of predictor where R represents a
type having a potentially infinite (possibly continuous)
amount of admissible values.
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API Design Il

e underlying symbolic Al library (e.g. 2P-Kt ), providing:

Rule a semantic, intelligible representation of the function
mapping Predictor's inputs into the corresponding
outputs, for a particular portion of the input space;

Theory an ordered collection of rules.
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About the Extracted Knowledge |

Knowledge extracted from classifiers

(task)(X1,..., Xn,y1) - p1 1():<) aoog Pn1():<)
<task>(X1,...,X,,,y2) i- p12(X) e pnz(X)
(task) (X0, ooy X ¥m) = Prm(X)s +evs ().
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About the Extracted Knowledge Il

Knowledge extracted from regressors

<task)(X1,...,X,,, Y) i- pl,l()_(); s pn,l()_(),
Y is A(X). ]

<t35k>(X17"'7Xn7 Y) 3= p1,2(X)7 ooog pn,2(X)?
Y is h(X).

<taSk>(X17""Xn’ Y) ‘- pl,m()_()’ Tt pn,m()_()y
Y is fim(X).
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About the Extracted Knowledge IlI

... where:

e task is the (n+ 1)-ary relation representing the classification or
regression task at hand,

@ each X; is a logic variable named after the it" input attribute of the
currently available data set,

o X is the n-nuple X1, ..., X,,

@ each p;; is either a n-ary predicate expressing some constraint about
one, two or more variables, or the true literal—which can be omitted,

@ y; is the output of the it" prediction rule,

@ f; is an n-ary function computing the output value for the regression
task in the particular portion of the input space handled by the jt/
rule, and

@ is/2 is the well-known Prolog predicate aimed at evaluating functions.
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About the Extracted Knowledge IV

Underlying assumptions

@ the input space is partitioned into a finite set of regions
@ each region is assigned with a particular outcome, namely:
e a class, for classification problems
e a constant, or a simpler function, for regression problems
© one rule generated describing for each region and its corresponding
outcome
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Next in Line. ..

@ Tutorial

G. Ciatto et al. (UniBO, UniURB) SKE via PSyKE PRIMA 2022 40/51



Tutorial

Two ways to reproduce the tutorial:

GitHub Repository (long way)
https://github.com/pikalab-unibo/prima-tutorial-2022

DockerHub Images (quick way)

https://hub.docker.com/r/pikalab/prima-tutorial-2022/tags
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Next in Line. ..

@ Tutorial
@ From GitHub
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) GRS
How to set the tutorial up from GitHub |

Enviromental pre-requisites
@ Python 3.9.x
e IDK > 11

o Git

©Q git clone
https://github.com/pikalab-unibo/prima-tutorial-2022

@ cd prima-tutorial-2022
© pip install -r requirements.txt

© jupyter notebook
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ECEET
How to set the tutorial up from GitHub Il

@ Your browser should automatically open showing the following page:

~ Jupyter | togou

s oo

Iminvifa 32348

oOoooooo

D uis oy Imnvifa  143K8

O open the psyke-tutorial.ipynb notebook
@ listen to the speaker presenting the tutorial =)
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Next in Line. ..

@ Tutorial
@ From DockerHub
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How to set the tutorial up via Docker |

Enviromental pre-requisites
@ Docker

o
DOCKER_IMAGE={

pikalab/prima-tutorial-2022:latest
pikalab/prima-tutorial-2022:latest-apple-ml

@ docker pull $DOCKER_IMAGE
e in case of lacking Internet access:

docker image load -i /path/to/local/image/file.tar

© docker run -it -rm -name prima-tutorial-ske-ski -p
8888:8888 $DOCKER_IMAGE

@ Some textual output such as the following one should appear:
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How to set the tutorial up via Docker Il

1 [T 09:51:46.940 NotebookApp] Writing notebook server cookie secret to /root/.local/
share/jupyter/runtime/notebook_cookie_secret

2 [I 09:51:47.159 NotebookApp] Serving notebooks from local directory: /mnotebook

3 [I 09:51:47.159 NotebookApp] Jupyter Notebook 6.5.2 is running at:

4 [I 09:51:47.159 NotebookAppl] http://cb0a3641caf0:8888/7?token=2
b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd

5 [I 09:51:47.159 NotebookApp] or http://127.0.0.1:8888/7?token=2
b02d31671c6ad9e9cfB8e036eb6962d3592af9cfdd5e60bd

6 [I 09:51:47.160 NotebookApp] Use Control-C to stop this server and shut down all
kernels (twice to skip confirmation).

7 [C 09:51:47.162 NotebookApp]

8

9 To access the notebook, open this file in a browser:

10 file:///root/.local/share/jupyter/runtime/nbserver -7-open.html
11 Or copy and paste one of these URLs:

12 http://cb0a3641caf0:8888/7token=2

b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
13 or http://127.0.0.1:8888/7?token=2b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e¢60bd
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How to set the tutorial up via Docker Il

@ Copy-paste into your browser any link of the form:
http://cb0a3641caf0:8888/7token=TOKEN

@ Your browser should now be showing the following page:

~ jupyter

@ open the psyke-tutorial.ipynb notebook
@ listen to the speaker presenting the tutorial =)
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Discussion

Next in Line. ..

© Discussion
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Notable Remarks

@ commitment to a particular output shape / expressiveness

e to preserve both human- and machine-interpretability
e other syntaxes may exist

discretization of the input space
discretization of the output space
features should have semantics per se

further refinements may be applied to rules

rules constitute global explanations
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Discussion

Current Limitations

@ tabular data as input — doesn't really work with images
@ high dimensional datasets — very large, poorly readable rules

@ highly variable input spaces — many rules — poor readability
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Discussion

Future research activities

@ target images or highly dimensional data in general
o target reinforcement learning (when based on NN)
@ target unsupervised learning

@ design and prototype your own extraction algorithm
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