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What and Why

What

PSyKE: a (Python) platform for symbolic knowledge extraction

GitHub Repository
https://github.com/psykei/psyke-python

(please star us :)

Main papers
[Sabbatini et al., 2021a]
[Sabbatini et al., 2022b]
[Sabbatini et al., 2022a]

G. Ciatto et al. (UniBO, UniURB) SKE via PSyKE PRIMA 2022 3 / 51

https://github.com/psykei/psyke-python


What and Why

Why

Pervasive adoption of sub-symbolic, ML-based predictors in AI

Their opacity[Lipton, 2018] brings drawbacks[Guidotti et al., 2018]:

difficulty in understanding what a black-box has learned from data
e.g. “snowy background” problem[Ribeiro et al., 2016]

difficulty in spotting “bugs” in what a numeric predictor has learned
because such knowledge is not explicitly represented

several blatant failures of ML-based systems reported so far
e.g. black people classified as gorillas [Crawford, 2016]

e.g. wolves classified because of snowy background [Ribeiro et al., 2016]

e.g. unfair decisions in automated legal systems [Wexler, 2017]

recognised citizens’ right to meaningful explanations[Selbst and Powles, 2017]

about the logic behind automated decision making
e.g. in General Data Protection Regulation (GDPR) [EU Parliament and Council, 2016]

→ Need to inspect and understand how ML predictors operate
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Background

Symbolic Knowledge Extraction I

Key insights:

Explaining supervised ML predictors. . .

. . . by search of a surrogate interpretable model. . .

. . . consisting of symbolic knowledge
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Background

Symbolic Knowledge Extraction II

Definition
Any algorithmic procedure accepting trained sub-symbolic predictors as

input and producing symbolic knowledge as output, in such a way that the
extracted knowledge reflects the behaviour of the predictor with high

fidelity.
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Background

Symbolic Knowledge Extraction III

Example:

→

Class = setosa← PetalWidth ≤ 1.0.

Class = versicolor← PetalLength > 4.9
∧ SepalWidth ∈ [2.9, 3.2].

Class = versicolor← PetalWidth > 1.6.

Class = virginica← SepalWidth ≤ 2.9.

Class = virginica←
SepalLength ∈ [5.4, 6.3].

Class = virginica←
PetalWidth ∈ [1.0, 1.6].
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Background

What does ‘symbolic’ actually mean? I

According to [van Gelder, 1990], symbolic representations of knowledge

involves a set of symbols,

which can be combined (e.g., concatenated) in (possibly) infinitely
many ways,

following precise syntactical rules, and
where both elementary symbols and any admissible combination of
them can be assigned with meaning

ie each symbol can be mapped into some entity from the domain at hand.

Notable example
formal logic
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Background

What does ‘symbolic’ actually mean? II

Opposite notion: distributed representations
where symbols alone have no meaning
unless it is considered along with its neighbourhood

ie any other symbol which is close (according to some notion of closeness)
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Background

Plenty of SKE methods from the literature I

Table: Summary of the knowledge-extraction algorithms. Symbol ∗ means that the related
dimension of the algorithm is not bounded. Symbol † means that the output is a power law.

# Method Translucency Task Input Expressiveness Shape
1 [Breiman et al., 1984] P C+R C+D P DT
2 [Quinlan, 1986] P C D P DT
3 [Saito and Nakano, 1988] P C D P L
4 [Clark and Niblett, 1989] P C C+D P L
5 [Masuoka et al., 1990] D (NN) C C F L
6 [Hayashi, 1990] D (NN) C B F L
7 [Towell and Shavlik, 1991] D (NN) C D MN L
8 [Berenji, 1991] D (NN) C C F L
9 [Brunk and Pazzani, 1991] P C C+D P L
10 [Murphy and Pazzani, 1991] P C D MN DT
11 [Horikawa et al., 1992] D (NN) C C F L
12 [Tresp et al., 1992] D (NN) R C P L
13 [Towell and Shavlik, 1993] D (NN) C D P L
14 [Thrun, 1993] D (NN) C C P+MN L
15 [Cohen, 1993] P C C+D P L
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Background

Plenty of SKE methods from the literature II

16 [Quinlan, 1993] P C C+D P DT
17 [Fu, 1994] D (NN) C D P L
18 [Halgamuge and Glesner, 1994]D (NN) C C F L
19 [Mitra, 1994] D (NN) C C+D F L
20 [Craven and Shavlik, 1994] P C B P+MN L
21 [Fürnkranz and Widmer, 1994] P C D P L
22 [Sestito and Dillon, 1994] P C C P L
23 [Andrews and Geva, 1995] D (NN) C C+D P L
24 [Matthews and Jagielska, 1995]D (NN) C B F L
25 [Cohen, 1995] P C C+D P L
26 [Pop et al., 1994] P C B P L
27 [Setiono and Liu, 1996] D (NN) C B P L
28 [Tickle et al., 1996] P C B P L
29 [Yuan and Zhuang, 1996] P C D F L
30 [Craven and Shavlik, 1996] P C B P+MN DT
31 [Hong and Lee, 1996] P C C F L
32 [Setiono and Liu, 1997] D (NN3) C C+D O L
33 [Setiono, 1997] D (NN) C D P L
34 [Nauck and Kruse, 1997] D (NN) C D F L
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Background

Plenty of SKE methods from the literature III

35 [Saito and Nakano, 1997] D (NN) R C † †
36 [Benítez et al., 1997] D (NN) C+R C F L
37 [Ishibuchi et al., 1997] P C C F L
38 [Taha and Ghosh, 1999] D (NN) C C P L
39 [Taha and Ghosh, 1999] D (NN) C C P L
40 [Krishnan et al., 1999b] D (NN) C B P L
41 [Nauck and Kruse, 1999] D (NN) R D F L
42 [Taha and Ghosh, 1999] P C B P L
43 [Krishnan et al., 1999a] P C C P DT
44 [?] P C+R C+D P DT
45 [Hong and Chen, 1999] P C C F L
46 [Setiono, 2000] D (NN) C B MN L
47 [Tsukimoto, 2000] D (NN) C C+D P L
48 [Kim and Lee, 2000] D (NN4) C C+D P DT
49 [Setiono and Leow, 2000] D (NN) R C+D P+MN+O DT
50 [Zhou et al., 2000] P C C+D P L
51 [Hong and Chen, 2000] P C C F L
52 [Sato and Tsukimoto, 2001] D (NN3) R C+D P DT
53 [Parpinelli et al., 2001] P C C+D P L
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Background

Plenty of SKE methods from the literature IV

54 [Castillo et al., 2001] P C+R C+D F L
55 [Saito and Nakano, 2002] D (NN) R C+D P L
56 [Setiono et al., 2002] D (NN3) R C+D P L
57 [Liu et al., 2002] P C C+D P L
58 [Boz, 2002] P C C+D P DT
59 [Markowska-Kaczmar and Trelak, 2003]P C C+D F L
60 [Zhou et al., 2003] P C C+D P L
61 [Setiono and Thong, 2004] D (NN3) R C+D P L
62 [Fu et al., 2004] D (SVM) C C+D P L
63 [Markowska-Kaczmar and Chumieja, 2004]P C C+D P L
64 [Rabuñal et al., 2004] P C C+D P L
65 [Chen, 2004] P C C P L
66 [Liu et al., 2004] P C C+D P L
67 [Browne et al., 2004] P C C+D P+MN DT
68 [Zhang et al., 2005] D (SVM) C C P L
69 [Barakat and Diederich, 2008]D (SVM) C+R * * *
70 [Fung et al., 2005] D (SVM+LC) C C P L
71 [Chaves et al., 2005] D (SVM) C C F L
72 [Torres and Rocco, 2005] P C C+D P+MN DT
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Background

Plenty of SKE methods from the literature V

73 [Etchells and G., 2006] P C C+D P L
74 [He et al., 2006] P C C+D P DT
75 [Huysmans et al., 2006] P R C P L
76 [Bader et al., 2007] D (NN) C B P L
77 [Schetinin et al., 2007] D (DTE) R C P DT
78 [Chen et al., 2007] D (SVM) C C P L
79 [Barakat and Bradley, 2007] D (SVM) C C+D P L
80 [Saad and Wunsch II, 2007] P C C+D O L
81 [Martens et al., 2007] P C C+D P L
82 [Núñez et al., 2008] D (SVM) C C P+O L
83 [Setiono et al., 2008] P C C+D P+O L
84 [Odajima et al., 2008] P C D P L
85 [Konig et al., 2008] P C+R C+D F DT
86 [Bader, 2009] D (NN) C B P L
87 [Martens et al., 2009] D (SVM) C * * *
88 [Lehmann et al., 2010] P C B P L
89 [Augasta and Kathirvalavakumar, 2012]P C C+D P L
90 [Sethi et al., 2012] P C C+D P TA
91 [Zilke et al., 2016] D (NN) R C+D P DT
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Background

Plenty of SKE methods from the literature VI

92 [Chan and Chan, 2017] D (NN) R C P L
93 [Yedjour and Benyettou, 2018] P C B P L
94 [Chan and Chan, 2020] D (NN) R C P L
95 [Wang et al., 2020] D (DTE) C C P L
96 [Sabbatini et al., 2021b] P R C P L
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Background

Taxonomy of SKE methods I
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Background

Taxonomy of SKE methods II

target AI task for the predictor undergoing extraction
classification i.e., finite amount of possible predictions

regression i.e., continuous predictions

translucency what kind of ML predictor does the SKE method support?
pedagogical: any supervised predictor
decompositional: a particular sort of ML predictor (e.g. NN,

SVM, DT)

input data supported by the predictor undergoing extraction
binary: X ≡ {0, 1}n

discrete: X ∈ {x1, . . . , xn}n
continuous: X ⊆ Rn
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Background

Taxonomy of SKE methods III

shape of the extracted knowledge
rule list: i.e. ordered sequences of if-then-else rules

decision tree: hierarchical set of if-then-else rules involving a
comparison among a variable and a constant

decision table: 2D tables summarising decisions for each
possible assignment of variables
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Background

Taxonomy of SKE methods IV

expressiveness of the extracted knowledge
propositional: boolean statements + logic connectives

there including arithmetic comparisons
among variables and constants

fuzzy: hierarchical set of if-then-else rules involving a
comparison among a variable and a constant

oblique: boolean statements + logic connectives +
arithmetic comparisons

M-of-N: any of the above + statements like
m − of− {ϕ1, . . . , ϕn}
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Background

Examples of methods and their classification – CART I

CART:[Breiman et al., 1984] classification and regression trees
translucency: pedagogical
target AI task: classification OR regression
input data: binary OR discrete OR continuous
shape: decision tree
expressiveness: propositional
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Background

Examples of methods and their classification – CART II

Figure: An example decision tree estimating the probability of kyphosis after spinal surgery,
given the age of the patient and the vertebra at which surgery was started
[Wikipedia contributors, 2021]. Notice that all decision trees subtend a partition of the input
space, and that those trees themselves provide intelligible representations of how predictions are
attained.
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Background

Examples of methods and their classification – CART III

Using CART for SKE
1 generate a ‘fake’ dataset by feeding the predictor undergoing SKE

2 train a decision tree on the ‘fake’ dataset
3 compute fidelity and repeat step 2 until satisfied
4 [opt.] rewrite the tree as a list of rules
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Background

Examples of methods and their classification – GridEx I

GridEx:[Sabbatini et al., 2021b] grid extractor
translucency: pedagogical
target AI task: regression
input data: continuous
shape: rule list
expressiveness: propositional
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Background

Examples of methods and their classification – GridEx II

Figure: Example of GridEx’s hyper-cube partitioning (merging step not reported)

(a)
Surrounding
cube

(b) Iteration
1 (p1 = 2)

(c) Iteration
2 (p2 = 3).

(d) Iteration
3 (p3 = 2).
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Background

Examples of methods and their classification – GridEx III

Using GridEx for SKE
1 partition the input space into pn1 hypercubes

evenly splitting the n dimensions into p1 bins
2 partition each non empty-region into pn2 hypercubes

evenly splitting the n dimensions into p2 bins
3 repeat the splitting arbitrarily
4 assign a prediction with each non-empty partition (e.g. average value)
5 write an if-then rule for each non-empty partition:

if : expressions delimiting the partition
then: prediction of that partition
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Background

Examples of methods and their classification – REFANN I

REFANN:[Setiono et al., 2002] rule extraction from function approximating
NN

translucency: decompositional (3-layered NN)
target AI task: regression
input data: continuous OR discrete
shape: rule list
expressiveness: propositional
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Background

Examples of methods and their classification – REFANN II

Figure: An example 3-layered multi-layer perceptron (MLP)
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Background

Examples of methods and their classification – REFANN III

Using REFANN for SKE
1 prune the network’s hidden units and input neurons
2 approximate the hidden units’ activation function with a 2-steps-wise

linear function
3 approximate the output units’ activation function with a 3- or

5-step-wise linear function
4 rewrite each output neuron as a linear combination of the input neuron
5 rewrite the linear combinations as rules

hence attaining a list of rules
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Background

Examples of methods and their classification – REFANN IV

Figure: (from [Setiono et al., 2002]) The tanh(x) function (solid curve) for x ∈ [0, xm] is
approximated by a 2-piece linear function (dashed lines)
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Background

Examples of methods and their classification – REFANN V

Figure: (from [Setiono et al., 2002]) The tanh(x) function (solid curve) for x ∈ [0, xm] is
approximated by a 3-piece linear function (dashed lines)
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PSyKE

Overall Design I
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PSyKE

Overall Design II

Key components:

extractor: any entity capable of extracting symbolic knowledge out of
sub-symbolic predictors

possibly, in the form of logic knowledge bases
possibly, leveraging upon the dataset the predictor was
trained upon . . .

possibly, after a discretization step

. . . and its schema

predictor: some trained classifier/regressor from which knowledge
should be extracted

discretiser: any component capable to turn continuous datasets into
discrete form, following some strategy

logic theory: outcome of the extraction process
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PSyKE

Overall Design III

Unified API for SKE
1 interface for Extractor, several implementations

eg CART, REAL, GridEx

1 interface for Discretiser, several implementations
1 interface for Predictor, several implementations

eg NN, kNN, DT
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PSyKE

API Design I

Underlying ML libraryUnderlying Symbolic AI library

Psyke

Predictor
R

DataFrame

Classifier
R

Regressor
R

RuleTheory

Extractor
R, P : Predictor<T>

predictor: P
discretization: Discretization

extract(DataFrame): Theory
predict(DataFrame): R

 *

wraps

1

1

input ofoutput of
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PSyKE

API Design II

General assumptions:

underlying ML library (e.g. Scikit-Learn[Pedregosa et al., 2011]), providing:
DataFrame a container of tabular data

Predictor<R> a computational entity which can be trained (a.k.a.
fitted) against a DataFrame and used to draw
predictions of type R;

Classifier<R> a particular case of predictor where R represents a
type having a finite amount of admissible values;

Regressor<R> a particular case of predictor where R represents a
type having a potentially infinite (possibly continuous)
amount of admissible values.
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PSyKE

API Design III

underlying symbolic AI library (e.g. 2P-Kt[Ciatto et al., 2021]), providing:
Rule a semantic, intelligible representation of the function

mapping Predictor’s inputs into the corresponding
outputs, for a particular portion of the input space;

Theory an ordered collection of rules.
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PSyKE

About the Extracted Knowledge I

Knowledge extracted from classifiers

⟨task⟩(X1, . . . ,Xn, y1) :- p1,1(X̄ ), . . . , pn,1(X̄ ).
⟨task⟩(X1, . . . ,Xn, y2) :- p1,2(X̄ ), . . . , pn,2(X̄ ).

...
⟨task⟩(X1, . . . ,Xn, ym) :- p1,m(X̄ ), . . . , pn,m(X̄ ).
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PSyKE

About the Extracted Knowledge II

Knowledge extracted from regressors

⟨task⟩(X1, . . . ,Xn,Y ) :- p1,1(X̄ ), . . . , pn,1(X̄ ),
Y is f1(X̄ ).

⟨task⟩(X1, . . . ,Xn,Y ) :- p1,2(X̄ ), . . . , pn,2(X̄ ),
Y is f2(X̄ ).

...
⟨task⟩(X1, . . . ,Xn,Y ) :- p1,m(X̄ ), . . . , pn,m(X̄ ),

Y is fm(X̄ ).
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PSyKE

About the Extracted Knowledge III

. . . where:
task is the (n + 1)-ary relation representing the classification or
regression task at hand,

each Xi is a logic variable named after the i th input attribute of the
currently available data set,

X̄ is the n-nuple X1, . . . ,Xn,

each pi ,j is either a n-ary predicate expressing some constraint about
one, two or more variables, or the true literal—which can be omitted,

yi is the output of the i th prediction rule,

fj is an n-ary function computing the output value for the regression
task in the particular portion of the input space handled by the j th

rule, and

is/2 is the well-known Prolog predicate aimed at evaluating functions.
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PSyKE

About the Extracted Knowledge IV

Underlying assumptions
1 the input space is partitioned into a finite set of regions
2 each region is assigned with a particular outcome, namely:

a class, for classification problems
a constant, or a simpler function, for regression problems

3 one rule generated describing for each region and its corresponding
outcome
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Tutorial

Tutorial

Two ways to reproduce the tutorial:

GitHub Repository (long way)
https://github.com/pikalab-unibo/prima-tutorial-2022

DockerHub Images (quick way)
https://hub.docker.com/r/pikalab/prima-tutorial-2022/tags
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Tutorial From GitHub

How to set the tutorial up from GitHub I

Enviromental pre-requisites
Python 3.9.x

JDK ≥ 11

Git

1 git clone
https://github.com/pikalab-unibo/prima-tutorial-2022

2 cd prima-tutorial-2022
3 pip install -r requirements.txt
4 jupyter notebook

G. Ciatto et al. (UniBO, UniURB) SKE via PSyKE PRIMA 2022 42 / 51



Tutorial From GitHub

How to set the tutorial up from GitHub II

5 Your browser should automatically open showing the following page:

6 open the psyke-tutorial.ipynb notebook
7 listen to the speaker presenting the tutorial =)
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Tutorial From DockerHub
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Tutorial From DockerHub

How to set the tutorial up via Docker I

Enviromental pre-requisites
Docker

1

DOCKER_IMAGE=

{
pikalab/prima-tutorial-2022:latest on most computers
pikalab/prima-tutorial-2022:latest-apple-m1 on Apple M1 computers

2 docker pull $DOCKER_IMAGE
in case of lacking Internet access:

docker image load -i /path/to/local/image/file.tar

3 docker run -it –rm –name prima-tutorial-ske-ski -p
8888:8888 $DOCKER_IMAGE

4 Some textual output such as the following one should appear:
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Tutorial From DockerHub

How to set the tutorial up via Docker II

�
1 [I 09:51:46.940 NotebookApp] Writing notebook server cookie secret to /root/.local/

share/jupyter/runtime/notebook_cookie_secret
2 [I 09:51:47.159 NotebookApp] Serving notebooks from local directory: /notebook
3 [I 09:51:47.159 NotebookApp] Jupyter Notebook 6.5.2 is running at:
4 [I 09:51:47.159 NotebookApp] http :// cb0a3641caf0 :8888/? token =2

b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
5 [I 09:51:47.159 NotebookApp] or http ://127.0.0.1:8888/? token=2

b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
6 [I 09:51:47.160 NotebookApp] Use Control -C to stop this server and shut down all

kernels (twice to skip confirmation).
7 [C 09:51:47.162 NotebookApp]
8
9 To access the notebook , open this file in a browser:

10 file :/// root/.local/share/jupyter/runtime/nbserver -7-open.html
11 Or copy and paste one of these URLs:
12 http :// cb0a3641caf0 :8888/? token=2

b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
13 or http ://127.0.0.1:8888/? token =2 b02d31671c6ad9e9cf8e036eb6962d3592af9cfdd5e60bd
� �
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Tutorial From DockerHub

How to set the tutorial up via Docker III

5 Copy-paste into your browser any link of the form:

http://cb0a3641caf0:8888/?token=TOKEN
6 Your browser should now be showing the following page:

7 open the psyke-tutorial.ipynb notebook
8 listen to the speaker presenting the tutorial =)
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Discussion

Next in Line. . .

1 What and Why

2 Background

3 PSyKE

4 Tutorial

5 Discussion
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Discussion

Notable Remarks

commitment to a particular output shape / expressiveness
to preserve both human- and machine-interpretability
other syntaxes may exist

discretization of the input space
discretization of the output space
features should have semantics per se
further refinements may be applied to rules
rules constitute global explanations
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Discussion

Current Limitations

tabular data as input → doesn’t really work with images
high dimensional datasets → very large, poorly readable rules
highly variable input spaces → many rules → poor readability
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Discussion

Future research activities

target images or highly dimensional data in general
target reinforcement learning (when based on NN)
target unsupervised learning
design and prototype your own extraction algorithm
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