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Motivation & Context

Context

Most of modern ML predictors are
black-boxes [Lipton, 2018]

interpretability vs performance
trade-off
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Predictive Performance

Generalised linear models

Decision trees

K Nearest Neighbours

Random Forest

Support Vector Machines

XGboost

Neural Networks

⇒ Dual (not exclusive) approaches to tackle the problem:
! symbolic knowledge extraction (SKE)
! symbolic knowledge injection (SKI)

Binding of inductive and deductive reasoning
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Motivation & Context

Motivation

More and more ML applications in critical domains
e.g. medicine, finance, law
⇒ Prevent predictors to become black-boxes

symbolic knowledge is used to guide predictors during learning
⇒ predictors do not violate or violate less the prior knowledge

Overcome the performances of ML state-of-the-art solutions
e.g. accuracy, learning time, need for less training data

Fill the lack of public and usable implementation of SKI algorithms
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Motivation & Context

Contribution

Contributions of the work
Elicit common steps of SKI workflow algorithms from literature
Implementation of a Python library for usage and development of SKI
algorithms
⇒ that supports the key phases of the SKI workflow
⇒ with interoperability for PSyKE [Sabbatini et al., 2021] and 2ppy
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Design overview

Modelling

Common SKI workflow steps from literature
[Besold et al., 2017, Xie et al., 2019, Calegari et al., 2020]

1 Knowledge is commonly provided using a logic formalism
e.g. first order logic, knowledge graph, propositional logic, etc.

2 Symbolic knowledge is somehow encoded into a sub-symbolic form

3 Ad-hoc methods to inject the sub-symbolic knowledge into a predictor
e.g. modifying the loss function, structuring the architecture, etc.

4 Training (virtually always required)
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Design overview

General SKI workflow
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Design overview

1 – Parsing

class(X−30, . . . ,X30, ie)←
pyramidine-rich(. . . ) ∧
X−3 = y ∧
X−2 = a ∧
X−1 = g ∧
X1 = g ∧
¬(ie-stop(. . . ))
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Design overview

2 – Fuzzification
Formula Continuous interpretation
J¬φK 1− JφK
Jφ ∧ ψK min{JφK, JψK}
Jφ ∨ ψK max{JφK, JψK}
Jφ = ψK J¬(φ 6= ψ)K
Jφ 6= ψK |JφK− JψK|
Jφ > ψK max{0, JφK− JψK}
Jφ ≥ ψK J(φ > ψ) ∨ (φ = ψ)K
Jφ < ψK max{0, JψK− JφK}
Jφ ≤ ψK J(φ < ψ) ∨ (φ = ψ)K
Jφ⇒ ψK min{1, 1− JψK + JφK}
Jφ⇐ ψK min{1, 1− JφK + JψK}
Jφ⇔ ψK min{1, 1− |JφK− JψK|}
Jexpr(X̄ )K expr(JX̄ K)
JtrueK 1
JfalseK 0
JX K x
JkK k
Jp(X̄ )K∗∗ Jψ1 ∨ . . . ∨ ψkK
Jclass(X̄ , yi )← ψK JψK∗

∗ encodes the value for the i th output
∗∗ assuming p is defined by k clauses of the form:

p(X̄ )← ψ1, . . . , p(X̄ )← ψk

class(X−30, . . . ,X30, ie)←
X−3 = y ∧
X−2 = a ∧
X−1 = g ∧
X1 = g

↓

min{min{min{1− |X−3 − y |,
1− |X−2 − a|},

1− |X−1 − g |},
1− |X1 − g |}
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Design overview

3 – Injection

Usually injection is performed
by adding a cost factor to the loss function [Tresp et al., 1992]

by structuring the predictor [Ballard, 1986, Towell et al., 1990]

 likes (john, jane).
 likes(jane, john).
 likes(jack, jane).
 friends(X, Y) :- likes(X, Y), likes(Y, X).
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 likes (john, jane).
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Design overview

PSyKI high level class diagram

ski

logic

datalog

grammar

Injector

predictor: Predictor

inject(formulae: List[Formula]): Predictor

Formula

Fuzzifier

visit(formulae: List[Formula]): Any

ConstrainingFuzzifierStructuringFuzzifier

LambdaLayerNetworkComposer

LukasiewiczGodelSubNetworkBuilder DatalogFormula
*

*

11
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Use case and example

Use case and example

Splice junction dataset and knowledge from UCI [Dua and Graff, 2017]

EI-stop ::- @-3 ’TAA’.
EI-stop ::- @-3 ’TAG’.
EI-stop ::- @-3 ’TGA’.
EI-stop ::- @-4 ’TAA’.
EI-stop ::- @-4 ’TAG’.
EI-stop ::- @-4 ’TGA’.
EI-stop ::- @-5 ’TAA’.
EI-stop ::- @-5 ’TAG’.
EI-stop ::- @-5 ’TGA’.

IE-stop ::- @1 ’TAA’.
IE-stop ::- @1 ’TAG’.
IE-stop ::- @1 ’TGA’.
IE-stop ::- @2 ’TAA’.
IE-stop ::- @2 ’TAG’.
IE-stop ::- @2 ’TGA’.
IE-stop ::- @3 ’TAA’.
IE-stop ::- @3 ’TAG’.
IE-stop ::- @3 ’TGA’.

pyramidine-rich :- 6 of (@-15 ’YYYYYYYYYY’).

EI :- @-3 ’MAGGTRAGT’, not(EI-stop).

IE :- pyramidine-rich, @-3 ’YAGG’, not(IE-stop).

Class, Id, DNA-sequence

EI,ATRINS-DONOR-521,CCAGCTGCAT...AGCCAGTCTG
EI,ATRINS-DONOR-905,AGACCCGCCG...GTGCCCCCGC
EI,BABAPOE-DONOR-30,GAGGTGAAGG...CACGGGGATG
...
IE,ATRINS-ACCEPTOR-701,TTCAGCGGCC...GCCCTGTGGA
IE,ATRINS-ACCEPTOR-1678,GGACCTGCTC...GGGGGCTCTA
IE,BABAPOE-ACCEPTOR-801,GCGGTTGATT...AAGATGAAGG
...
N,AGMKPNRSB-NEG-1,CAAAAGAACA...CAAGGCTACA
N,AGMORS12A-NEG-181,AGGGAGGTGT...GGGCATGGGG
N,AGMORS9A-NEG-481,TGGTCAATTC...TCTTGCTCTG
...
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Use case and example

Code snippet

General script to perform injection
from psyki.logic.datalog.grammar.adapters.antlr4 import get_formula_from_string
from psyki.ski.injectors import NetworkComposer

# ...

# Symbolic knowledge
with open(filename) as file:

rows = file.readlines()
# 1 - Parsing
knowledge = [get_formula_from_string(row) for row in rows]

predictor = build_NN()
# 2 and 3 - Fuzzification and injection
injector = InjectorX(predictor)
predictor_with_knowledge = injector.inject(knowledge)

# 4 - Training
predictor_with_knowledge.fit(train_x, train_y)
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Use case and example

Results
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Conclusions & future works

Conclusions & future works

Summing up
Relevant contributions of this work:

detecting main steps of SKI workflow
implementation of a Python library that

provide already existing SKI algorithms
support the development of new algorithms

Future works
Some future research directions

training predictors combining SKE and SKI
implementation of the most successful SKI algorithms
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