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Symbolic Knowledge Injection |

Deflnltlon [Besold et al., 2017, Xie et al., 2019, Calegari et al., 2020]

Symbolic knowledge injection (SKI) can be defined as:
any algorithmic procedure affecting how sub-symbolic predictors
draw their inferences in such a way that predictions are either com-
puted as a function of, or made consistent with, some given sym-
bolic knowledge.
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Symbolic Knowledge Injection Il

Sub-symbolic predictors

@ deep neural networks (DNN);

e convolutional neural networks (CNN),
e recurrent neural networks (RNN);

@ kernel machines;

@ basically everything that is sub-symbolic (models consisting of vectors,
tensors, etc. of real numbers with no meaning for a human).
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Symbolic Knowledge Injection Il
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Symbolic Knowledge Injection IV

Symbolic knowledge

A symbolic representation consists of:

@ a set of symbols;

@ a set of grammatical rules governing the combining of symbols;
© elementary symbols and any admissible combination of them can be
assigned with meaning.

= Symbolic knowledge is both human and machine interpretable,
o first order logic (FOL) is an example of symbolic representation.
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Symbolic Knowledge Injection V

Set of propositional logic rules for the classification task of the well known
iris dataset:

big petal N average sepal — virginica.
big petal \ —average sepal — versicolor.
big petal — setosa.

average sepal = (3 < SepalWidth < 5)
big petal = (PetalLength > 3)
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Symbolic Knowledge Injection VI

There are several benefits:
@ prevent the predictor to become a black-box!;
@ reduce learning time;
@ reduce the data size needed for training;

@ improve predictor’s accuracy;

@ build a predictor that behave as a logic engine.
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Symbolic Knowledge Injection VII

Explainability can be achieved

Post-hoc explanation

@ applying an algorithm of symbolic knowledge extraction on a trained
predictor;

@ output — logic rules that describe the predictor’'s behaviour.

By design

@ constraining the behaviour of predictors that are natively black-boxes
with symbolic knowledge;

@ structuring the predictor’s architecture with symbolic knowledge;

@ output — a predictor that does not violate the prior knowledge.
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Symbolic Knowledge Injection VIII

There exist three major ways to perform knowledge injection on
sub-symbolic predictors:

@ constraining, a cost factor proportional to the violation of the
knowledge is introduced during learning;

@ structuring, the architecture of the predictor is built in such a way to
mimic the knowledge;

@ embedding, the symbolic knowledge is embedded into a tensor form
and it is given in input as training data to the predictor.
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Algorithm |

KINS: Knowledge Injection via Network Structuring

A general SKI algorithm that does not impose constrains on the
sub-symbolic predictor to enrich.

@ aim — enrich;

predictor — neural network;

°
@ how — structuring;
°

logic — stratified Datalog with negation.

Public implementation on PSyKI
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KINS algorithm

Algorithm I

Formula | C. interpretation | Formula \ C. interpretation
[-¢] {1 —[el} || [¢ < ] n{min{1,1— [¢] + [v]}}
[é A Y] n{min{[¢], [V]}} || [¢ < ¢] n{min{1,1—[¢] — [V]]}}
lo V] n{max{[¢], [¢]}} || [expr(X)] expr([X])
[¢ =] n{[~(¢ # ¥)[} || [true] 1
lo # Y] n{ll¢] = [V1I} | [false] 0
lo > ¢] n{max{0,[¢] — [¢]}} | [X] x
le=v] | n{l(¢>v)v(e=v)} | [x] _ k
lo <] n{max{0, [¥] — [¢[}} | [P(X)]™ [1 V... Vb
[o<9y] | nlll¢ <y)Vv(s=1)} | [class(X,yi) < ¥] [l
o = «] | n{min{1,1—[y] + [¢]}}

* encodes the value for the ith output

** assuming p is defined by k clauses of the form:

p(X) 1, ..., p(X) <
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KINS algorithm

Algorithm IV
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Algorithm V

PRIOR KNOWLEDGE

MAPPING BETWEEN
TRAINING DATA FEATURES' INDICES
AND VARIABLES' NAMES

NEURAL NETWORK

KINS INJECTOR

INJECTION LAYER
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KINS algorithm

Case study |

PSJGS: Primate Splice-Junction Gene Sequences dataset

EI-stop ::- @-3 ’TAA’.
EI-stop : @-3 ’TAG’.
EI-stop @-3 ’TGA’.
EI-stop : @-4 °TAA’.
EI-stop : @-4 ’TAG’.
EI-stop : @-4 *TGA’.
EI-stop @-5 *TAA’.
EI-stop : @-5 *TAG’.
EI-stop ::- @-5 >TGA’.
IE-stop @1 ’TAA’.
IE-stop @1 ’TAG’.
IE-stop : @1 ’TGA’.
IE-stop @2 °TAA’.
IE-stop : @2 ’TAG’.
IE-stop : @2 ’TGA’.
IE-stop : @3 ’TAA’.
IE-stop @3 °TAG’.
IE-stop ::- @3 ’TGA’.

pyramidine-rich :- 6 of (@-15 ’YYYYYYYYYY’).
EI :- @-3 °MAGGTRAGT’, not(EI-stop).

IE :- pyramidine-rich, @-3 ’YAGG’, not(IE-stop).

Magnini et al.  (DISI, Univ. Bologna)
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Class, Id, DNA-sequence

EI,ATRINS-DONOR-521,CCAGCTGCAT. . .AGCCAGTCTG
EI,ATRINS-DONOR-905,AGACCCGCCG. . . GTGCCCCCGC
EI,BABAPOE-DONOR-30,GAGGTGAAGG. . . CACGGGGATG

IE,ATRINS-ACCEPTOR-701,TTCAGCGGCC. . .GCCCTGTGGA
IE,ATRINS-ACCEPTOR-1678,GGACCTGCTC. . . GGGGGCTCTA
IE,BABAPOE-ACCEPTOR-801,GCGGTTGATT. . . AAGATGAAGG

N, AGMKPNRSB-NEG-1,CAAAAGAACA. . .CAAGGCTACA

N,AGMORS12A-NEG-181,AGGGAGGTGT. . . GGGCATGGGG
N, AGMORS9A-NEG-481,TGGTCAATTC. . . TCTTGCTCTG

3190 Records
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KINS algorithm

Case study |l
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Class | Logic Formulation
class(X,ei) «+X_3=mAX2=aAX_1=gAX;1=gA
Xpp=tAXyz=a=rAXpu=aA
X5 =g A Xp6 =t A—(ei_stop(X))
ei_stop(X)+ X3=tAXo=aAXi=a
ei _stop(X) «— X3=tAXo2=aAXi1=g¢g
£l ei_stop(X)+ X 3=tAXo2=gAX_1=a
ei_stop(X) ¢+ Xa=tAX3=aAXo=a
ei_stop(X) X a=tAX3=aAXo=
stop()_()eX s=tAX3=gANXo2=a
stop()_()eX s=tAXas=aAX3=a
stop()_()eX,g,ft/\X,L,fa/\X 3=¢g
ei_stop(X) + X5 =tAX4=gAX3=a
7777777 cl Bgsf)? ,ie) < pyramidine_rich(X) A =(ie_stop(X)) A~~~
X3=yAXo2=aAXa=gAX1=g
pyramidine_ rich(X) <6 < (X_15 =y +...+ X6 =7¥)
ie_stop(X) < Xo=tAXpz3=aAXu=a
je_stop(X) ¢« X2 =tAXj3=aAXia=g
IE ieistop():() —Xpp=tAX3=gAXuu=a
ie_stop(X) « Xyz=tAXpuu=aAXis=a
je_stop(X) ¢ X3 =t AXg=aAXs=g
je stop(X) ¢ X3 =t AXa=gAXs=a
je_stop(X) < Xia =t A X5 =aAXg=a
je_stop(X) ¢ Xia =t AXs=aAXys=g
je stop(X) ¢ Xia =t AX5=gAXs=a
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Case study Il
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Case study IV

set_seed(self.seed)

# Loading dataset and apply one-hot encoding for each feature

# This means that for feature i_th we have 4 new features,

# one for each base: i_th_a, i_th_c, i_th_g, i_th_t.

data = get_splice_junction_data(’data’)

y = data_to_int(data.iloc[:, -1:], CLASS_MAPPING)

x = get_binary_data(data.iloc[:, :-1], AGGREGATE_FEATURE_MAPPING)
y.columns = [x.shape[1]]

data = x.join(y)

# Loading rules and conversion in Datalog form

rules = get_splice_junction_rules(’kb’)

rules = get_splice_junction_datalog_rules(rules)

rules = get_binary_datalog_rules(rules)

rules = [get_formula_from_string(rule) for rule in rules]

# Creation of the base model

model = create_fully_connected_nn_with_dropout ()

injector = NetworkComposer (model, get_splice_junction_extended_feature_mapping()) # aka KINS!
result = k_fold_cross_validation(data, injector, rules, seed=self.seed)
result.to_csv(self.file + ’.csv’, sep=’;’)
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Case study V

@ neural network: 3-layers fully connected (64, 32, 3 neurons per layer
respectively) with a 20% of dropout;

@ mapping between features and variables: a map where keys are
variables’ names (e.g.,
X_30a, X_30¢, X_308, X_30t, X_29a, . .. ,X+30t) and features’ indices
(e.g. 0,1,...,239);

@ injection layer: layer O;

o knowledge: see slide 15;

e training: Adams as optimiser for 100 epochs (with early stop
conditions);
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Case study VI
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TEFI: train-extract-fix-inject

ub-symbolic Predictor | | ‘ / Symbolic
>S Data H Pre-Processing H Selection I | SKI ‘ \ Knowledge
M
< Predictions H Inference H Validation }—b SKE
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