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Motivation & Context

Motivation

The three ways of reasoning
induction: a kind of reasoning that uses particular examples in order to
reach a general conclusion about something
→ machine learning (e.g., neural networks);
deduction: the act or process of using logic or reason to form a
conclusion or opinion about something
→ symbolic artificial intelligence (e.g., logic programs);
abduction: the forming and accepting on probation of a hypothesis to
explain surprising facts
→ abductive logic programming.

Mimic the human society
do not be bound for one single type of reasoning;
cooperation! Knowledge sharing and explanation. [Omicini, 2020]
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Motivation & Context

Context

Knowledge representation
symbolic representation → formalism consisting of: [van Gelder, 1990]

set of symbols;
set of rules enabling possibly infinite combinations of symbols;
each (composed) symbol comes with its meaning ;
human readable and interpretable;
intensional and extensional.

sub-symbolic representation → the knowledge is represented via
numeric data structures:

usually with fixed size;
a number does not have a particular meaning per se;
a number could be meaningful only considering its local context;
obscure, difficult to interpret.
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Symbolic and Sub-Symbolic Tools

Symbolic Knowledge Extraction

Symbolic Knowledge Extraction (SKE)
[d’Avila Garcez et al., 2001, Hailesilassie, 2016, Zilke et al., 2016, Guidotti et al., 2018]

any algorithmic procedure accepting trained sub-symbolic predic-
tors as input and producing symbolic knowledge as output, in such
a way that the extracted knowledge reflects the behaviour of the
predictor with high fidelity.

SKE advantages
post-hoc explanation of sub-symbolic predictors;
generates a symbolic representation of the predictor’s behaviour,
usually a logic formalism
→ much more concise w.r.t. the predictor, less space cost;
→ formal logic can be used as lingua franca in knowledge sharing.
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Symbolic and Sub-Symbolic Tools

Symbolic Knowledge Injection

Symbolic Knowledge Injection (SKI)
[Besold et al., 2017, Xie et al., 2019, Calegari et al., 2020]

any algorithmic procedure affecting how sub-symbolic predictors
draw their inferences in such a way that predictions are either com-
puted as a function of, or made consistent with, some given sym-
bolic knowledge.

SKI advantages
improve predictor’s metrics (e.g., accuracy, f1-score, r2, etc.);
reduce learning time;
loosening the need of big datasets;
prevent the predictor to become a black-box;
independent from the source of the knowledge.
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Symbolic and Sub-Symbolic Tools

Transfer Learning

Transfer Learning (TL) [Pan and Yang, 2010]

is the set of techniques aimed at letting a predictor P , targetting
task T , take advantage from the knowledge acquired by some prior
predictor P ′, trained on some other task T ′ (usually similar to T ).

TL properties
similarly to SKI it improves the predictor’s performance
→ inference ability (e.g., accuracy, f1-score, r2, ect.);
→ external metrics (e.g., training time, dataset size, etc.).
constrained by the (sub-symbolic) knowledge of the first predictor
→ for instance, if we are doing TL from a NN to another, we have to
replicate part of it – contiguous layers and weights – to the new one;
→ it is obscure for humans.
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Symbolic and Sub-Symbolic Tools

Multi-task Learning

Multi-task Learning (MTL) [Caruana, 1997, Zhang and Yang, 2022]

is a set of mechanisms aimed to improve the performance of
a predictor via TL. More precisely, given a set of similar tasks
{T1, . . . ,Tm}, MTL aims at learning the m tasks altogether, by
training as many predictors P1, . . . ,Pm. In doing so, MTL attempts
to improve the performance of each Pi , by taking advantage of the
knowledge while training the other predictors.

MTL properties
similarly to TL it improves the predictors’ performance;
unlike TL where there is one task that receives the knowledge from the
other(s), all tasks simultaneously receive knowledge from the others
→ the simultaneous training has pro and cons;
→ still not interpretable.
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Cooperative (Transfer) Learning

Cooperative Learning I

Cooperative Learning (CoL)
a CoL system consists of a multi-agent system (MAS) where agents
can retrieve and exploit knowledge – especially symbolic – about a
task from other agents and provide it to others when requested.

CoL characteristics
agents should agree on common, shared symbolic representation
means by which behavioural specifications could be described—and
later exchanged;
agents should come with symbolic (and sub-symbolic) tools for
knowledge manipulation.
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Cooperative (Transfer) Learning

Cooperative Learning II
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Cooperative (Transfer) Learning

Cooperative Transfer Learning I

Cooperative Transfer Learning (CoTL)
a CoTL system consists of a multi-agent system (MAS) where
agents can retrieve and exploit knowledge about several tasks from
other agents and provide it to others when requested.

CoTL characteristics
unlike simple CoL systems, agents in CoTL systems may exploit
knowledge (either their own, or other agents’ one) about related tasks
to learn novel tasks they were not originally designed for
→ find ways to exploit the knowledge K of the task T for a similar –
yet not the same – task T ′ could be not trivial.
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Cooperative (Transfer) Learning

Cooperative Transfer Learning II
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Conclusions & future works

Conclusions & (future) works I

Summing up
Cooperative Learning and Cooperative Transfer Learning are MAS where
cooperation and sharing of (symbolic) knowledge are fundamental inter
agents operations. Internally, an agent should be able to manipulate the
knowledge in order to exploit it in solving tasks. Key aspects are:

agreement upon a logic formalism as lingua franca for knowledge
exchange;
agents should come with algorithms able to manipulate knowledge
(e.g., SKE, SKI, logic engine, etc.);
how to exploit knowledge in scenarios of heterogeneous tasks.
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Conclusions & future works

Conclusions & (future) works II

Current works
PSyKE & PSyKI [Sabbatini et al., 2021a, Magnini et al., 2022b]

SKI algorithms [Magnini et al., 2022a, Magnini et al., 2022c]

SKE algorithms [Sabbatini et al., 2021b, Sabbatini and Calegari, 2022]

Future works
test the train-extract-fix-inject workflow;
create and test CoL systems;
investigate how to handle knowledge for heterogeneous tasks;
finally, create and test CoTL systems.
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