SKI: Symbolic Knowledge Injection

state of the art and research perspectives

Matteo Magnini
matteo.magnini@unibo.it

Dipartimento di Informatica — Scienza e Ingegneria (DISI)
Alma Mater Studiorum — Universita di Bologna

07-06-2022

Magnini (DISI, Univ. Bologna) SKI: Symbolic Knowledge Injection 07-06-2022 1/60


mailto:matteo.magnini@unibo.it

Next in Line. ..

@ Premises

Magnini (DISI, Univ. Bologna) SKI: Symbolic Knowledge Injection 07-06-2022 1/60



~Premises |
Definition

We define symbolic knowledge injection as:
any algorithmic procedure affecting how sub-symbolic predictors
draw their inferences in such a way that predictions are either com-
puted as a function of, or made consistent with, some given sym-
bolic knowledge*.

* a wide definition that includes the vast majority of the works surveyed in
[Besold et al., 2017, Xie et al., 2019, Calegari et al., 2020].
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S . . ==- 1
Symbolic Knowledge

A symbolic representation consists of:

@ a set of symbols;

@ a set of grammatical rules governing the combining of symbols;

© elementary symbols and any admissible combination of them can be
assigned with meaning.

= Symbolic knowledge is both human and machine interpretable,
o first order logic (FOL) is an example of symbolic representation.
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Sub-symbolic data

@ ML methods, and sub-symbolic approaches in general, represent data
as arrays of real numbers, and knowledge as functions over such data;

@ despite numbers are technically symbols as well, we cannot consider
arrays and their functions as symbolic knowledge representation (KR)
means;

@ sub-symbolic approaches frequently violate ltems 2 and 3.
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Local vs distributed

When data are a numeric arrays:

Local representation

@ Each number of the array has a well-defined meaning;

@ example — iris dataset sample, array with 5 elements where each
element has meaning (sepal/petal length/width and class).

Distributed representation

@ Each number of the array is meaningless, unless it is considered along
with its neighbourhood;

@ example — images represented as w x h matrices of numbers in range
[0,1]. (Violation of item 3)
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L R
Sub-symbolic predictors |

@ deep neural networks (DNN);

o convolutional neural networks (CNN),
e recurrent neural networks (RNN);

@ kernel machines;
@ basically everything that is sub-symbolic.

The vast majority of predictors are NN most probably because they are
easy to manipulate and they have top performances.
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S . . ==- 1
Sub-symbolic predictors I

Error: 0.346668 Steps: 26926

petalwidth

<=0.6

a >0.6
Iris-setosa (50)

<=1. >1.7
petallenght Iris-virginica (46/1)
<=49 549
petalwidth

Iris-versicolor (48/1)
<=1.5 >1.5
Iris-virginica (3) Iris-versicolor (3/1)

Magnini (DISI, Univ. Bologna) SKI: Symbolic Knowledge Injection 07-06-2022

7/60



- e
Why SKI?

There are several benefits:
@ prevent the predictor to become a black-box!;
@ reduce learning time;

reduce the data size needed for training;

improve predictor’s accuracy;

e o6 o

build a predictor that behave as a logic engine.

Magnini (DISI, Univ. Bologna) SKI: Symbolic Knowledge Injection 07-06-2022 8 /60



Explainable Artificial Intelligence

Explainability can be achieved:

Post-hoc explanation

@ applying an algorithm of symbolic knowledge extraction on a trained
predictor;

@ output — logic rules that describe the predictor’'s behaviour.

By design

@ constraining the behaviour of predictors that are natively black-boxes
with symbolic knowledge;

@ structuring the predictor’s architecture with symbolic knowledge;

@ output — a predictor that does not violate the prior knowledge.
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Taxonomy

Next in Line. ..

© Taxonomy
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Aim

Enrich (learning support)

@ reduce learning time;
@ reduce the data size needed for training;

@ improve predictor’s accuracy.

Manifold (symbolic knowledge manipulation)

@ logic inference;
@ information retrieval;

@ knowledge base completion /fusion.
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Taxonomy

Predictors |

Theoretically, one can inject prior knowledge into any sub-symbolic
predictor. In practice, NN are almost the sole predictors treated in
literature, however, lot of different NN architecture are considered.

Inputs Weigths

Weigthed
Sum

Activation
Function Output
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Predictors Il

Feature maps
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*., Output
._"
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Convolutions Subsampling Convolutions Subsampling  Fully connected

@ Unfold
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Taxonomy

How

There exist three major ways to perform knowledge injection on
sub-symbolic predictors:

@ constraining, a cost factor proportional to the violation of the
knowledge is introduced during learning;

@ structuring, the architecture of the predictor is built in such a way to
mimic the knowledge;

e embedding, the symbolic knowledge is embedded into a tensor form
and it is given in input as training data to the predictor.
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Taxonomy

Constraining |

@ Knowledge cost factor is introduced in the loss function;
@ for NN the cost affects backpropagation during
training.
= Predictor does not violate the prior knowledge (to a certain extent).

Dataset
Tlkes (ohn, jane). | ' l
: likes(jane, john). N
1 likes(jack, jane). H
ikes(jack, jane) AN L:

! friends(X, Y) - likes(X, Y), likes(Y, X).
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Taxo

Constraining |l
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Taxonomy

Constraining Il
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Structuring |

@ Inner architecture is shaped to be able to “mimic” the knowledge;
e for NN this means ad-hoc layers.
= Predictor directly exploits knowledge when needed.

1 likes (john, jane). H
!likes(ane, john). [ >
1 likes(jack, jane). H
! friends(X, es(X, Y), likes(Y, X). !
located_in ; = = - = = = - > % — Dataset
H
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Structuring ||

@ We need to define a mapping from crispy logic rules into fuzzy
continuous interpretations;

@ then we need to map the interpretations into ad-hoc neurons/layers.
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Structuring |1

A+ BANCA-D.
A~ EANF.
B + true.
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Embedding |

@ Symbolic knowledge is embedded into a tensor form;

o this is used as predictor’s input data (alone or with a “standard”
dataset).

= Predictor's aim is manifold in most cases.

ke (john, jane) |

! likes(jane, john). '

1 likes(jack, jane). Dataset
3 fends(x, Y) - lkes(X, Y), e .

: R
s N T v
H A
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Taxonomy

Embedding Il

@ Knowledge graph embedding ;

@ entities and relations are embedded into continuos vector spaces;

e scoring function f,(h, t) defined on each fact (h, r, t) to measure its

plausibility;
h h i M- g
r
t
r
Moo -y
Entity and Relation Space Entity and Relation Space Entity Space Relation Space of 7
(c) TransR.

(a) TransE.
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Embedding Il
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Logic |

indirect representation of data,

define a relation/set by describing its elements via other relations/sets.

direct representation of data,

explicit definition of entities involved.

Recursive intensional predicates are very expressive and powerful, as they
enable the description of infinite sets via a finite (and commonly small)
amount of formulee.
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Logic Il

Almost the totality of SKI algorithms deal with:
o first order logic (FOL);
@ knowledge graph (KG);
@ propositional logic (PL).
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First Order Logic |

@ FOL is extremely flexible and expressive;
@ you can use recursion and define recursive structures;

@ maybe too “powerful” for canonic NN.

= Most NN are natively DAG (directed acyclic graph)
o this allows backpropagation as training algorithm but ...
e how can you support recursion?
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First Order Logic

@ FOL is extremely flexible and expressive;

@ you can use recursion and define recursive structures;
@ maybe too “powerful” for canonic NN.

= Most NN are natively DAG (directed acyclic graph)
o this allows backpropagation as training algorithm but ...
e how can you support recursion?

You can’t! Unless you use some tricks.
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First Order Logic Il

parent(abraham, isaac).

)
parent(sarah, isaac).
parent(isaac, jacob).

)

parent(rebekah, jacob).

VXVYparent(X Y

VXYY parent(X, Y) A male(X

VXYY parent(X, Y) A female(X
VXYY 3Zparent(X,Z) A parent(Z,Y

~— N N N

male(abraham).
female(sarah).
male(isaac).
female(rebekah).

male(jacob).

— child(Y, X).

— father(X,Y).

— mother(X,Y).

— grandparent(X, Y).
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Knowledge Graph |

@ Only constants, variables and n-ary predicates with n < 3;

collections of triplets (a f b) or f(a,b)

essentially directed graph:

e nodes — individuals,
o vertices — properties connecting individuals;

may instantiate an ontology, i.e., a formal description of classes
characterising a given domain.
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Taxonomy

Knowledge Graph Il

(AlfredHitchcock, DirectorOf, Psycho)

| T

Sir Alfred Joseph Hitchcock Psycho is a psychological horrol
(13 August 1899 - 29 April 1980) film directed and produced by
was an English film director and Alfred Hitchcock, and written by
producer, ... Joseph Stefano, ...

Magnini (DISI, Univ. Bologna) SKI: Symbolic Knowledge Injection 07-06-2022

29 /60



Taxonomy

Propositional Logic |

@ No quantifiers, terms, and non-atomic predicates;

@ expressions involving one or many 0-ary predicates (propositions)
possibly interconnected by ordinary logic connectives;

@ low expressiveness, but easy to work with.
big petal A average sepal — virginica.
big petal N\ —average sepal — versicolor.
big petal — setosa.
average sepal = (3 < SepalWidth < 5)
big petal = (PetalLength > 3)
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Taxonomy

Propositional Logic Il

Iris Data (red=setosa,green=versicolor,blue=virginica)
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Literature overview

Next in Line. ..

© Literature overview
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Literature overview

Notable works

KBANN: Knowledge Base Artificial Neural Network [Towe!l and Shavik, 1092]

It is one of the first works in SKI. Authors inject prior knowledge into a NN
and validate their method on real world biological datasets.

@ aim — enrich;
@ predictor — neural network;

@ how — structuring and constraining;

@ logic — propositional.
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Literature overview

KBANN |

Algprithm

@ rewrite rules so that disjuncts are expressed as a set of rules that each
have only one antecedent;

directly map the rule structure into a neural network;
label units in the KBANN-net according to their “level”;
add hidden units to the network at user-specified levels (optional);

add units for known input features that are not referenced in the rules;

© 0000

add links not specified by translation between all units in
topologically-contiguous levels;

Perturb the network by adding near-zero random numbers to all link
weights and biases.

(<)
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Literature overview

KBANN Il
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KBANN Il

Error = — Z [(1—d;)xlogy (1 — a;) + d; x log, (a;)]
i=1

(wi — winig;)?
1+ (wi — Winit;)?

Regularizer = A Z

i€w
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FANN: Fibred Artificial Neural Network

[d’Avila Garcez and Gabbay, 2004, Bader et al., 2005]

Authors present an interesting approach to deal with FOL in NN. The key
idea is to allow single neurons to behave like entire embedded networks
according to a fibring function ¢.

@ aim — manifold;
@ predictor — neural network;
@ how — structuring;

@ logic — first order logic.
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Platform for Symbolic Knowledge Injection

Next in Line. ..

@ Platform for Symbolic Knowledge Injection
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Platform for Symbolic Knowledge Injection

General SKI workflow

(Symbolic) (Sub-symbolic)
Knowledge Predictor
1 3
Parsing Injection
(Visitable) Predictor with
Knowledge exploitable knowledge
2 4
Fuzzification Training
(Sub-symbolic) I (Trained)
Knowledge Predictor
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Platform for Symbolic Knowledge Injection
1 — Parsing

class(X_3p, ..., X30, i) <
pyramidine-rich(...) A

X3=yA
X_o=aA
X_1=g A
X1=gA

—(ie-stop(...))
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2 — Fuzzification

Formula Continuous interpretation
[-¢] 1—[¢]
lo A ] min{[9], []} .
[6v el max{[¢], [¥]} class(X_3p, ..., X30, i€)
[o =] [~(6 # ¥)]
[ # v] 4] - [v]| Xz3=yA
[6 > vl max{0, [¢] — [¥]}
[6 > v [(6>v)V (6 =0)] Xo2=aA
[¢ < ] max{0, [¥] — [¢]}
[¢ <l [(6<v)V(6=1v)] X1=gA
lo =] min{1,1—[¢] + [¢]}
lo =] min{1,1 — [¢] + [¥]} Xl =8
lo = ¢] min{1,1—|[¢] - [¥]|}
[expr(X)] expr([X]) 1
[true] 1
[false] 0
%1)5]]] . min{min{min{1 — |X_3 — y|,
Ip(X)1* [¥rV... vl 1—1|X_2—al},
[class(X,yi) < 9] L] 1 \X ’}
—|A1—-&
* encodes the value for the ith output 1 ‘X g‘} ’
* % - 1=

assuming p is defined by k clauses of the form:
p(X) b1, ..., p(X) Py
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Platform for Symbolic Knowledge Injection

3 — Injection

Injection step is algorithm specific but it falls back into the three
approaches already discussed:

Injection families

@ constraining;
@ structuring;

@ embedding.

We will see some examples later.
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Platform for Symb Knowledge Injection

4 — Training
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Platform for Symbolic Knowledge Injection

Overall Design |

A layer

KINS

Q

Symbolic
Knowledge
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Platform for Symbolic Knowledge Injection

Overall Design Il

Injector
e - @]
o predictor: Predictor

o inject(formulae: List[Formula]): Predictor

| e——

m‘/ @ Fuzzifier [@LambdaLayer}

A:\K visit(formulae: List[Formulal): Any
1

[@StructurmgFuzzmer
I
C

[@ConstramingFuzziﬁer‘
|
]

]

[
l

g N

logic\

datalog\

grammar\
I

% [@SubNetworkBuilder}
\ |

C )

[@Godel‘ [@Lukasiewicz‘ [@Datalongmula‘
[ | 1 |
l )

[
l ) s

)
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Overall Design Il

Key components

@ injector: an entity capable of injecting symbolic knowledge into
sub-symbolic predictors;

e predictor: a classifier/regressor;
e formula: a visitable data structure representing a logic rule;

o fuzzifier: an entity that embed a crisp formula into a fuzzy continuous
interpretation object.
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Overall Design IV

from psyki.logic.datalog.grammar.adapters.antlr4 import get_formula_from_string
from psyki.ski.injectors import AnyInjector

#

# For this algorithm we need to explicitly specify the mapping
# between feature names and variable names
feature_mapping = {...}

# Symbolic knowledge
with open(filename) as f:
rows = f.readlines()
# 1 - Parse textual logic rules into visitable Formulae
knowledge = [get_formula_from_string(row) for row in rows]

predictor = build_NN()

# 2 and 3 - Fuzzification and injection

injector = AnyInjector(predictor, feature_mapping, ...)
predictor_with_knowledge = injector.inject (knowledge)

# 4 - Training
predictor_with_knowledge.fit(train_x, train_y)
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Network Structuring |

KINS: Knowledge Injection via Network Structuring

A general SKI algorithm that does not impose constrains on the
sub-symbolic predictor to enrich.

@ aim — enrich;
o predictor — neural network;
@ how — structuring;

@ logic — stratified Datalog with negation.
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Network Structuring |l
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Network Structuring Il

Formula | C. interpretation | Formula \ C. interpretation
[-¢] {1 —[el} || [¢ < ] n{min{1,1 - [¢] + [¥]}}
[é A Y] n{min{[¢], [V]}} || [¢ < ¢] n{min{1,1—[¢] — [V]]}}
lo V] n{max{[¢], [¢]}} || [expr(X)] expr([X])
[¢ =] n{[~(¢ # ¥)[} || [true] 1
lo # Y] n{ll¢] = [V1I} | [false] 0
lo > ¢] n{max{0,[¢] — [¢]}} | [X] x
le=v] | n{l(¢>v)v(e=v)} | [x] _ k
[¢ <] n{max{0, [¥] — [¢[}} | [P(X)]™ [1 V... Vb
[o<9y] | nlll¢ <y)Vv(s=1)} | [class(X,yi) < ¥] [l
o = «] | n{min{1,1—[y] + [¢]}}

* encodes the value for the ith output

** assuming p is defined by k clauses of the form:

p(X) 1, ..., p(X) <
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Network Structuring IV

& @@=

#*
© ®
(-]
C)
i

©©
B &
©,
U

)
f
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Platform for Symbolic Knowledge Injection

Knowledge Injection via Network Structuring V

PRIOR KNOWLEDGE

MAPPING BETWEEN
TRAINING DATA FEATURES' INDICES
AND VARIABLES' NAMES

NEURAL NETWORK

KINS INJECTOR

INJECTION LAYER
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Case study |

PSJGS: Primate Splice-Junction Gene Sequences dataset

EI-stop ::- ©-3 ’TAA’.

EI-stop @-3 ’TAG’.

EI-stop @-3 TGA’.

EI-stop @-4 °TAA’.

EI-stop ©-4 ’TAG’.

EI-stop ©-4 *TGA’. Class, Id, DNA-sequence

EI-stop @-5 *TAA’.

EI-stop @-5 TAG’. EI,ATRINS-DONOR-521,CCAGCTGCAT. . .AGCCAGTCTG

EI-stop ::- @5 ’TGA’. EI,ATRINS-DONOR-905,AGACCCGCCG. . . GTGCCCCCGC
EI,BABAPOE-DONOR-30,GAGGTGAAGG. . . CACGGGGATG

IE-stop >TAA’ . oo

IE-stop STAG . IE,ATRINS-ACCEPTOR-701,TTCAGCGGCC. . .GCCCTGTGGA

IE-stop STGA? . IE,ATRINS-ACCEPTOR-1678,GGACCTGCTC. . . GGGGGCTCTA

IE-stop STAA? . IE,BABAPOE-ACCEPTOR-801,GCGGTTGATT. . . AAGATGAAGG

IE-stop >TAG’ . co

IE-stop STGA? . N, AGMKPNRSB-NEG-1,CAAAAGAACA. . .CAAGGCTACA

IE-stop STAA? . N, AGMORS12A-NEG-181,AGGGAGGTGT. . . GGGCATGGGG

IE-stop STAG? . N, AGMORS9A-NEG-481, TGGTCAATTC. . . TCTTGCTCTG

IE-stop :: >TGA’ .

pyramidine-rich :- 6 of (@-15 ’YYYYYYYYYY’). 3190 Records

EI :- @-3 ’MAGGTRAGT’, not(EI-stop).

IE :- pyramidine-rich, @-3 ’YAGG’, not(IE-stop).
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Platform for Symbolic Knowledge Injection

Case study |l

Class

Logic Formulation

El

Magnini (DISI, Univ. Bologna)

class(X,ei) +X_3=mAXo2=aAX_1=gA X1
Xoo=tANXpz=a=rAXg=aA
Xi5 =g A Xp6 =t A(ei_stop(X))

aA Xy
aA Xy
gA X1
aAX_o
aAX o
gA X2

ei_stop(X) + X3 =tAX_2

ei _stop(X) « X_3 =t A X2
ei_stop(X) + X3 =t A X2
stop()_()eX 2=t AX_3
ei_stop(X) + X_a =t AX_3
ei_stop(X) + X_a =t AX_3
stop()_()eX s=tAXg=aAX3
stop()_()eX,g,ft/\X,L,fa/\X 3
ei_stop(X) + X5 =t A X4
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=gA X3

=a

=8

:g/\

X3=yAXo2=aAXa=gAX1=g

pyramidine_ rich(X) 6 < (X_is=y+...

ie_stop(X) < X2 =t A Xy3
je_stop(X) < X2 =t A Xi3
je_stop(X) - X2 =t A Xi3
je_stop(X) < X3 =t A Xiq
je stop(X) < X3 =t A Xq
je stop(X) < X3 =1t A Xiq
je_stop(X) < Xia =t A Xys
je_stop(X) < Xia =t A Xys
(X)

ie_stopl — Xpa =t A X5

aAXia
aAXia
A Xya
aAXis
aAXis
gA Xys
aAXie
aAXie
g/ Xys
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I
o P PO P M

SKI: Symbolic Knowledge Injection

+X.6=7y)

07-06-2022

53 /60



Case study Il
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Case study IV

set_seed(self.seed)

# Loading dataset and apply one-hot encoding for each feature

# This means that for feature i_th we have 4 new features,

# one for each base: i_th_a, i_th_c, i_th_g, i_th_t.

data = get_splice_junction_data(’data’)

y = data_to_int(data.iloc[:, -1:], CLASS_MAPPING)

x = get_binary_data(data.iloc[:, :-1], AGGREGATE_FEATURE_MAPPING)
y.columns = [x.shape[1]]

data = x.join(y)

# Loading rules and conversion in Datalog form

rules = get_splice_junction_rules(’kb’)

rules = get_splice_junction_datalog_rules(rules)

rules = get_binary_datalog_rules(rules)

rules = [get_formula_from_string(rule) for rule in rules]

# Creation of the base model

model = create_fully_connected_nn_with_dropout ()

injector = NetworkComposer (model, get_splice_junction_extended_feature_mapping()) # aka KINS!
result = k_fold_cross_validation(data, injector, rules, seed=self.seed)
result.to_csv(self.file + ’.csv’, sep=’;’)
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Case study V

@ neural network: 3-layers fully connected (64, 32, 3 neurons per layer
respectively) with a 20% of dropout;

@ mapping between features and variables: a map where keys are
variables’ names (e.g.,
X_30a, X_30¢, X_308, X_30t, X_29a, . .. ,X+30t) and features’ indices
(e.g. 0,1,...,239);

@ injection layer: layer O;

@ knowledge: see slide 52;

e training: Adams as optimiser for 100 epochs (with early stop
conditions);
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Case study VI

DNN

KBANN

Backpropagation

PEBLS

D3

NearestNeighbour
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Open literature research lines

Next in Line. ..

© Open literature research lines
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SKE & SKiI
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Multi-Agent Systems

@ agent to agent explanation
— SKE + SKI + explanation;

@ logic as lingua franca for communication between heterogeneous
entities;

@ knowledge sharing and knowledge exploitation among agents;

@ symbolic techniques integrated with sub-symbolic ones
— representing and manipulating cognitive processes and their results.
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